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INERTIAL TSENG METHOD WITH NONDECREASING

ADAPTIVE STEPSIZE FOR VARIATIONAL INEQUALITY ON

HADAMARD MANIFOLDS

HAMMED A. ABASS AND OLAWALE K. OYEWOLE

Abstract. In this article, we propose an inertial and a viscosity iter-
ative method for solving variational inequality problem on Hadamard
manifolds. The iterative algorithm is inspired by Tseng’s extragradient
method with a self-adaptive procedure which generates dynamic step-
sizes converging to a positive constant. The proposed method does not
require the knowledge of the Lipschitz constant as well as the sequential
weak continuity of the corresponding operator. Under a pseudomono-
tone assumption on the underlying vector field, we establish a conver-
gence result for solving a pseudomonotone variational inequality and
fixed point problems of nonexpansive mapping under some mild assump-
tions. Finally, we present some fundamental experiment to illustrate the
numerical behavior of our proposed method. The result discussed in this
article extends and complements many related results in the literature.

1. Introduction

Variational inequality problems (in short, VIP) were initially studied by Stam-
pacchia [29] in 1964. Since its inception, many kinds of variational inequalities
have been studied and generalized in several directions using novel and innovative
techniques ( see [8, 35, 36] and the references therein). The theory of variational
inequalities has been studied quite extensively and has emerged as an important
tool in the study of a wide class of problems from mechanics, optimization, en-
gineering, science and social sciences. Many problems in applied fields can be
formulated as variational inequalities or boundary value problems on manifolds,
which are nonlinear in general. It is well-known that the generalization of op-
timization methods from Euclidean spaces to Riemannian manifolds has some
important advantages. For instance, constrained optimization problems can be
seen as unconstrained ones from the Riemannian geometry point of view. An-
other important advantage of doing this is that optimization problems with non
convex objective functions become convex through the introduction of an appro-
priate Riemannian metric (see [10, 26]). Therefore, the study and approximation
of solutions to variational inequalities on the Riemannian manifolds is natural.
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In 2003, Németh [21] introduced the variational inequality problem on Hadamard
manifolds: find u ∈ C such that

⟨F (u), exp−1
u v⟩ ≥ 0, ∀ v ∈ C, (1.1)

where C is a nonempty, closed and convex subset of Hadamard manifold M, F :
C → TM is a vector field, that is, F (u) ∈ TuM for some u ∈ C, and exp−1 is the
inverse of exponential map. If M = Rn, then the vector field F reduces to the
operator F : C → Rn and problem (1.1) reduces to the one introduced by [29]
defined by: find u ∈ C such that

⟨F (u), v − u⟩ ≥ 0, ∀ v ∈ C.

We denote the solution set of (1.1) by V IP (C,F ).
The extragradient method developed by Korpelevich [17] in 1976 is one of the
most widely used techniques for resolving VIP (1.1). It is important to say
that the extragradient method is not efficient in the case where the feasible set
does not have a closed form expression, which makes projection onto it very
difficult. It is also important to note that the mapping in the extragradient
method requires knowledge of the Lipschitz constant. Lipschitz constants are
regrettably, frequently unknown or challenging to accurately estimate. Many
researchers have paid close attention to extragradient method and have greatly
improved it in various ways.
Recently, Tseng [33] introduced a single projection extragradient method for
solving variational inequalities in real Hilbert spaces. A typical disadvantage of
Tseng’s algorithm and many other algorithm is the assumption that the Lipschitz
constant of the monotone operator can be estimated. Recently, Thong and Vuong
[32] proposed a modified Tseng extragradient method in which the operator is
pseudomonotone and there is no requirement for a prior estimate of the Lipschitz
constant of the cost operator. In the setting of Hadamard manifolds, Tang [31]
introduced the Korpelevich’s method for solving variational inequality problem.
Using the idea in [31], Chen et al. proposed the following Tseng extragradient
method with new step size which does not require the knowledge of the Lipschitz
constant for solving pseudomonotone variational inequality problem as follows:
Algorithm 1.1. Modified Tseng’s extragradient method.
Initialization: Choose λ0 > 0, µ, θ ∈ (0, 1) and let x0 ∈ M be arbitrary starting
points.

Step 1: Given the current iterate xn, compute

yn = PC(expxn
(−λnF (xn)), (1.2)

If xn = yn, then stop: xn is a solution. Otherwise
Step 2: Compute

xn+1 = expyn λn(Pyn,xnF (xn)− F (yn)) (1.3)

and

λn+1 =

min

{
µd(xn, yn)

∥Pyn,xnF (xn)− F (yn)∥

}
, λn if F (xn) ̸= F (yn),

λn, otherwise.
(1.4)

Stopping criterion Set n := n+ 1 and return to step 1.
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They proved that the sequence generated by their method converges to a solu-
tion to variational inequality problem. We observed that very little research have
been carried out on variational inequality problem in the settings of Hadamard
manifolds. Due to this, we introduce a new iterative method for approximating
the solution of VIP((1.5)) in the setting of Hadamard manifolds using an inertial
and viscosity method.
One of the best ways to speed up the convergence rate of iterative algorithms
is to combine the iterative scheme with the inertial term. This term is repre-
sented by θn(xn − xn−1) and is a remarkable tool for improving the performance
of algorithms and it is known to have some nice convergence characteristics. For
growing interests in this direction (see [1, 2, 4, 22]). The idea of inertial extrapo-
lation method was first introduced by Polyak [25] and was inspired by an implicit
discretization of a second-order-in-time dissipative dynamical system, so -called
”Heavy Ball with Friction”

v′′(t) + γv′(t) +∇f(v(t)) = 0, (1.5)

where γ > 0 and f : Rn → R is differentiable. System (1.5) is discretized so that,
having the terms xn−1 and xn, the next term xn+1 can be determined using

xn−1 − 2xn + xn−1

j2
+ γ

xn − xn−1

j
+∇f(xn) = 0, n ≥ 1, (1.6)

where j is the step-size. Equation (1.6) yields the following iterative algorithm:

xn+1 = xn + β(xn − xn−1)− α∇f(xn), n ≥ 1, (1.7)

where β = 1 − γj , α = j2 and β(xn − xn−1) is called the inertial extrapolation
term which is intended to speed up the convergence of the sequence generated by
(1.7).
Motivated by the result of Korpelevich method of [17], Tseng’s extragradient
method of [33] and viscosity method of [11], we introduce an Inertial Tseng
extragradient method for solving variational inequality and fixed point problem.
While we still require the operator to be Lipschitz continuous, the prior knowledge
of the Lipschitz constant is not necessary. Moreover, we introduce a self-adaptive
procedure which generates a sequence of stepsizes converging monotonically to
a constant. We establish that the sequence generated by our proposed method
converges to a common solution of pseudomonotone variational inequality and
fixed point of a nonexpansive mapping.
We highlight some of the contributions of our result as follows:

(i) We employ the inertial method as introduced by Polyak [25], which is
quite different from the ones in [1, 3] as this lacks essential direction to
move objects to their possible destination (see [13]).

(ii) We were able to dispense with the condition
∞∑
n=1

θnd(xn − xn−1) < ∞ a

strong condition which has been used for instance (see [15]).
(iii) The method in this article requires a self-adaptive procedure which gen-

erates dynamic step-sizes and is allowed to increase from iteration to iter-
ation unlike the method of [31] which requires the knowledge of Lipschitz
constant to be imposed on the operator.
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(iv) The result discussed in this article extends and generalizes the results of
[1, 7, 9, 18, 22, 23, 24] from linear to nonlinear spaces.

2. Preliminaries

LetM be anm-dimensional manifold, let x ∈ M and let TxM be the tangent space
of M at x ∈ M. We denote by TM =

⋃
x∈M TxM the tangent bundle of M. An

inner product R⟨·, ·⟩ is called a Riemannian metric on M if ⟨·, ·⟩x : TxM×TxM →
R is an inner product for all x ∈ M. The corresponding norm induced by the
inner product Rx⟨·, ·⟩ on TxM is denoted by ∥ · ∥x. We will drop the subscript
x and adopt ∥ · ∥ for the corresponding norm induced by the inner product. A
differentiable manifold M endowed with a Riemannian metric R⟨·, ·⟩ is called a
Riemannian manifold. In what follows, we denote the Riemannian metric R⟨·, ·⟩
by ⟨·, ·⟩ when no confusion arises. Given a piecewise smooth curve γ : [a, b] → M
joining x to y (that is, γ(a) = x and γ(b) = y), we define the length l(γ) of γ

by l(γ) :=
∫ b
a ∥γ′(t)∥dt. The Riemannian distance d(x, y) is the minimal length

over the set of all such curves joining x to y. The metric topology induced by
d coincides with the original topology on M. We denote by ∇ the Levi-Civita
connection associated with the Riemannian metric [28].
Let γ be a smooth curve in M. A vector field X along γ is said to be parallel if
∇γ′X = 0, where 0 is the zero tangent vector. If γ′ itself is parallel along γ, then
we say that γ is a geodesic and ∥γ′∥ is a constant. If ∥γ′∥ = 1, then the geodesic
γ is said to be normalized. A geodesic joining x to y in M is called a minimizing
geodesic if its length equals d(x, y). A Riemannian manifold M equipped with a
Riemannian distance d is a metric space (M, d). A Riemannian manifold M is
said to be complete if for all x ∈ M, all geodesics emanating from x are defined
for all t ∈ R. The Hopf-Rinow theorem [28], posits that if M is complete, then
any pair of points in M can be joined by a minimizing geodesic. Moreover, if
(M, d) is a complete metric space, then every bounded and closed subset of M
is compact. If M is a complete Riemannian manifold, then the exponential map
expx : TxM → M at x ∈ M is defined by

expx v := γv(1, x) ∀ v ∈ TxM,

where γv(·, x) is the geodesic starting from x with velocity v (that is, γv(0, x) = x
and γ′v(0, x) = v). Then, for any t, we have expx tv = γv(t, x) and expx 0 =
γv(0, x) = x. Note that the mapping expx is differentiable on TxM for every
x ∈ M. The exponential map expx has an inverse exp−1

x : M → TxM. For any
x, y ∈ M, we have d(x, y) = ∥ exp−1

y x∥ = ∥ exp−1
x y∥ (see [28] for more details).

The parallel transport Pγ,γ(b),γ(a) : Tγ(a)M → Tγ(b)M on the tangent bundle TM
along γ : [a, b] → R with respect to ∇ is defined by

Pγ,γ(b),γ(a)v = F (γ(b)), ∀ a, b ∈ R and v ∈ Tγ(a)M,

where F is the unique vector field such that ∇γ′(t)v = 0 for all t ∈ [a, b] and
F (γ(a)) = v. If γ is a minimizing geodesic joining x to y, then we write Py,x

instead of Pγ,y,x. Note that for every a, b, r, s ∈ R, we have

Pγ(s),γ(r) ◦ Pγ(r),γ(a) = Pγ(s),γ(a) and P−1
γ(b),γ(a) = Pγ(a),γ(b).
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Also, Pγ(b),γ(a) is an isometry from Tγ(a)M to Tγ(b)M, that is, the parallel transport
preserves the inner product

⟨Pγ(b),γ(a)(u), Pγ(b),γ(a)(v)⟩γ(b) = ⟨u, v⟩γ(a), ∀ u, v ∈ Tγ(a)M. (2.1)

We now give some examples of Hadamard manifolds.
Space 1: Let R++ = {x ∈ R : x > 0} and M = (R++, ⟨·, ·⟩) be the Riemannian
manifold equipped with the inner product ⟨x, y⟩ = xy ∀ x, y ∈ R. Since the
sectional curvature of M is zero [5], M is an Hadamard manifold. Let x, y ∈ M
and v ∈ TxM with ∥v∥2 = 1. Then d(x, y) = | lnx − ln y|, expx tv = xe

vx
t ,

t ∈ (0,+∞), and exp−1
x y = x ln y − x lnx.

Space 2: Let Rm
++ be the product space Rm

++ := {(x1, x2, · · · , xm) : xi ∈
R++, i = 1, 2, · · · ,m}. Let M = ((R)++, ⟨·, ·⟩) be the m-dimensional Hadamard
manifold with the Riemannian metric ⟨p, q⟩ = pT q and the distance d(x, y) =

| ln x
y | = | ln

m∑
i=1

xi
yi
|, where x, y ∈ M with x = {xi}mi=1 and y = {yi}mi=1.

A subset K ⊂ M is said to be convex if for any two points x, y ∈ K, the geodesic
γ joining x to y is contained in K. That is, if γ : [a, b] → M is a geodesic such
that x = γ(a) and y = γ(b), then γ((1 − t)a + tb) ∈ K for all t ∈ [0, 1]. A com-
plete simply connected Riemannian manifold of non-positive sectional curvature
is called an Hadamard manifold. We denote by M a finite dimensional Hadamard
manifold. Henceforth, unless otherwise stated, we represent by K a nonempty,
closed and convex subset of M.

Definition 2.1. Let X(M) be the set of all single-valued vector fields V : M →
TM such that V (x) ∈ TxM for each x ∈ M and the domain D(V ) of V be defined
by D(V ) = {x ∈ M : V (x) ̸= ∅}. Let V ∈ X(M). We say that V is

(i) pseudomonotone, if for any x, y ∈ D(V ),

⟨V (x), exp−1
x y⟩ ≥ 0 ⇒ ⟨V (y), exp−1

y x⟩ ≤ 0.

(ii) Lipschitz continuous, if there exists a constant L > 0 such that

∥Py,xV (x)− V (y)∥ ≤ Ld(x, y), ∀ x, y ∈ M.

Definition 2.2. A mapping S : K → K is said to be

(i) contractive, if there exits a constant k ∈ (0, 1) such that

d(Sx, Sy) ≤ kd(x, y), ∀ x, y ∈ K. (2.2)

If k = 1 in (2.2), then S is said to be nonexpansive.

We now collect some results and definitions which we shall use in the next section.
Proposition 2.1. [28]. Let x ∈ M. The exponential mapping expx : TxM → M is
a diffeomorphism. For any two points x, y ∈ M, there exists a unique normalized
geodesic joining x to y, which is given by

γ(t) = expx t exp
−1
x y ∀ t ∈ [0, 1].

A geodesic triangle ∆(p, q, r) of a Riemannian manifold M is a set containing
three points p, q, r and three minimizing geodesics joining these points.
Proposition 2.2. [28]. Let ∆(p, q, r) be a geodesic triangle in M. Then

d2(p, q) + d2(q, r)− 2⟨exp−1
q p, exp−1

q r⟩ ≤ d2(r, q) (2.3)
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and

d2(p, q) ≤ ⟨exp−1
p r, exp−1

p q⟩+ ⟨exp−1
q r, exp−1

q p⟩. (2.4)

Moreover, if θ is the angle at p, then we have

⟨exp−1
p q, exp−1

p r⟩ = d(q, p)d(p, r) cos θ. (2.5)

Also,

∥ exp−1
p q∥2 = ⟨exp−1

p q, exp−1
p q⟩ = d2(p, q). (2.6)

Remark 2.1. [19] If x, y ∈ M and v ∈ TyM, then

⟨v,− exp−1
y x⟩ = ⟨v, Py,x exp

−1
x y⟩ = ⟨Px,yv, exp

−1
x y⟩. (2.7)

Remark 2.2. From (2.4) and Remark 2.1, let v ∈ TpM, we have

⟨v, exp−1
p q⟩ ≤ ⟨v, exp−1

p r⟩+ ⟨v, Pp,r exp
−1
r q⟩. (2.8)

For any x ∈ M and K ⊂ M, there exists a unique point y ∈ K such that
d(x, y) ≤ d(x, z) for all z ∈ K. This unique point y is called the nearest point
projection of x onto the closed and convex set K and is denoted PK(x).

Lemma 2.1. [34]. For any x ∈ M, there exists a unique nearest point projection
y = PK(x). Furthermore, the following inequality holds:

⟨exp−1
y x, exp−1

y z⟩ ≤ 0 ∀ z ∈ K.

Lemma 2.2. [19] Let x0 ∈ M and {xn} ⊂ M with xn → x0. Then the following
assertions hold:

(i) For any y ∈ M, we have exp−1
xn

y → exp−1
x0

xn and exp−1
y xn → exp−1

y x0,
(ii) If vn ∈ TxnM and vn → v0, then v0 ∈ Tx0M,
(iii) Given un, vn ∈ TxnM and u0, v0 ∈ Tx0M, if un → u0, then ⟨un, vn⟩ →

⟨u0, v0⟩,
(iv) For any u ∈ Tx0M, the function F : M → TM, defined by F (x) = Px,x0u

for each x ∈ M is continuous on M.

The next lemma presents the relationship between triangles in R2 and geodesic
triangles in Riemannian manifolds (see [6]).

Lemma 2.3. [6]. Let ∆(x1, x2, x3) be a geodesic triangle in M. Then there ex-
ists a triangle ∆(x̄1, x̄2, x̄3) corresponding to ∆(x1, x2, x3) such that d(xi, xi+1) =
∥x̄i− x̄i+1∥ with the indices taken modulo 3. This triangle is unique up to isome-
tries of R2.

The triangle ∆(x̄1, x̄2, x̄3) in Lemma 2.3 is said to be the comparison triangle for
∆(x1, x2, x3) ⊂ M. The points x̄1, x̄2 and x̄3 are called comparison points to the
points x1, x2 and x3 in M.
A function h : M → R is said to be geodesic if for any geodesic γ ∈ M, the
composition h ◦ γ : [u, v] → R is convex, that is,

h ◦ γ(λu+ (1− λ)v) ≤ λh ◦ γ(u) + (1− λ)h ◦ γ(v), u, v ∈ R, λ ∈ [0, 1].

Lemma 2.4. [19] Let ∆(p, q, r) be a geodesic triangle in a Hadamard manifold

M and ∆(p
′
, q

′
, r

′
) be its comparison triangle.
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(i) Let α, β, γ (resp. α
′
, β

′
, γ

′
) be the angles of ∆(p, q, r) (resp. ∆(p

′
, q

′
, r

′
))

at the vertices p,q,r (resp. p
′
, q

′
, r

′
). Then, the following inequalities hold:

α
′ ≥ α, β

′ ≥ β, γ
′ ≥ γ,

(ii) Let z be a point in the geodesic joining p to q and z
′
its comparison point in

the interval [p
′
, q

′
]. Suppose that d(z, p) = ∥z′−p

′∥ and d(z
′
, q

′
) = ∥z′−q

′∥.
Then the following inequality holds:

d(z, r) ≤ ∥z′ − r
′∥.

Lemma 2.5. [19] Let x0 ∈ M and {xn} ⊂ M be such that xn → x0. Then, for
any y ∈ M, we have exp−1

xn
y → exp−1

x0
y and exp−1

y xn → exp−1
y x0;

The following propositions (see [12]) are very useful in our convergence analysis:
Proposition 2.3. Let M be an Hadamard manifold and d : M × M :→ R be
the distance function. Then the function d is convex with respect to the product
Riemannian metric. In other words, given any pair of geodesics γ1 : [0, 1] → M
and γ2 : [0, 1] → M, then for all t ∈ [0, 1], we have

d(γ1(t), γ2(t)) ≤ (1− t)d(γ1(0), γ2(0)) + td(γ1(1), γ2(1)).

In particular, for each y ∈ M, the function d(·, y) : M → R is a convex function.
Proposition 2.4. Let M be a Hadamard manifold and x ∈ M. The map
Φx = d2(x, y) satisfying the following:

(1) Φx is convex. Indeed, for any geodesic γ : [0, 1] → M, the following
inequality holds for all t ∈ [0, 1] :

d2(x, γ(t)) ≤ (1− t)d2(x, γ(0)) + td2(x, γ(1))− t(1− t)d2(γ(0), γ(1)).

(2) Φx is smooth. Moreover, ∂Φx(y) = −2 exp−1
y x.

Proposition 2.5. Let M be an Hadamard manifold and x ∈ M. Let ρx(y) =
1
2d

2(x, y). Then ρx(y) is strictly convex and its gradient at y is given by

∂ρx(y) = − exp−1
y x.

Lemma 2.6. [30] Let u, v ∈ K and λ ∈ [0, 1]. Then the following relations hold
on K.

(i) ∥λu+ (1− λ)v∥2 = λ∥u∥2 + (1− λ)∥v∥2 − λ(1− λ)∥u− v∥2;
(ii) ∥u± v∥2 = ∥u∥2 ± 2⟨u, v⟩+ ∥v∥2;
(iii) ∥u+ v∥2 ≤ ∥u∥2 + 2⟨v, u+ v⟩.

Lemma 2.7. [27] Let {un} be a sequence of nonnegative real numbers, {αn} be a

sequence of real numbers in (0, 1) such that
∞∑
n=1

αn = ∞ and {vn} be a sequence

of real numbers. Assume that

un+1 ≤ (1− αn)un + αnvn ∀ n ≥ 1.

If lim sup
k→∞

vnk
≤ 0 for every subsequence {unk

} of {un} satisfying the condition

lim inf
k→∞

(unk+1 − unk
) ≥ 0,

then lim
n→∞

un = 0.
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3. Main result

In this section, we propose a viscosity iterative method for solving pseudomono-
tone variational inequality problem and fixed point problem of nonexpansive map-
ping in Hadamard manifolds which is based on Tseng’s extragradient method.
We give the following assumptions:
Assumption 3.1.

(B1) Let C be a nonempty, closed and convex subset of a Hadamard manifold
M.

(B2) Let f : C → C be a contraction mapping with constant k ∈ (0, 1) and
S : C → C be a nonexpansive mapping such that F (S) ̸= ∅.

(B3) The mapping F : C → TM is pseudomonotone and L-Lipschitz continu-
ous. However, the execution of our method does not require the knowledge
of Lipschitz constant.

(B4) The solution set Ω := F (S) ∩ V I(C,F ) is nonempty.

Assumption 3.2.

(D1) {ϵn} is a positive sequence such that ϵn = ◦(βn), that is, lim
n→∞

ϵn
βn

= 0,

(D2) Let βn ∈ (0, 1) such that lim
n→∞

βn = 0 and
∞∑
n=1

βn = ∞,

(D3) δn ∈ (0, 1) and 0 < lim inf δn ≤ lim sup δn < 1,

(D4) {ηn} is a nonnegative real numbers sequence such that
∞∑
n=1

ηn < ∞.

Algorithm 3.1. Modified Tseng’s method for solving solving VIP with nonde-
creasing stepsize.
Initialization: Choose α0 > 0, µ, θ ∈ (0, 1) and let x0, x1 ∈ C be arbitrary
starting points.
Iterative step: Given xn−1, xn, and αn, choose θn ∈ [0, θ̄] where

θn =

min

{
ϵn

d(xn, xn−1)
, θ

}
, if xn ̸= xn−1,

θ, otherwise.
(3.1)

Calculate xn+1 and αn+1 for each n ≥ 1 as follows:

Step 1: Compute {
wn = expxn

(−θn exp
−1
xn

xn−1)

yn = PC(expwn
(−αnF (wn)),

(3.2)

Step 2: Calculate

zn = expyn αn(Pyn,wnF (wn)− F (yn)) (3.3)

Step 3: Calculate

un = expzn(1− δn) exp
−1
zn T (zn) (3.4)

Step 4: Calculate xn+1 and αn+1 by

xn+1 = expf(xn)(1− βn) exp
−1
f(xn)

un. (3.5)
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and

αn+1 =

min

{
µd(wn, yn)

∥Pyn,wnF (wn)− F (yn)∥

}
, αn + ηn if F (wn) ̸= F (yn),

αn + ηn, otherwise.

(3.6)

Stopping criterion If xn+1 = un = wn = yn for some n ≥ 1 then stop. Other-
wise set n := n+ 1 and return to Iterative step 1.

Lemma 3.1. Let {αn} be the sequence generated by Algorithm 3.1. Then we

have that lim
n→∞

αn = α and α ∈
[
min

{µ
L , α0

}
, α0 + η

]
, where η =

∞∑
n=0

ηn.

Proof. Since F is Lipschitz-continuous with constant L > 0, then in the case of
Pyn,wn(F (wn)− F (yn)) ̸= 0, we get

µd(wn, yn)

∥Pyn,wnF (wn)− F (yn)∥
≥ µd(wn, yn)

Ld(wn, yn)
=

µ

L
. (3.7)

By the definition of αn+1 in Algorithm 3.1 and mathematical induction, we have
that the sequence {αn} has upper bound of α0+η and lower bound min

{ µ
L , α0

}
.

The rest of the proof is similar to Lemma 3.1 in [20], so we omit it. □

Remark 3.1. It is obvious that the stepsize in Algorithm 3.1 is allowed to increase
from iteration to iteration and so Algorithm 3.1 reduces the dependence on the
initial stepsize α0. Also, since {ηn} is summable, we obtain lim

n→∞
ηn = 0. Thus

the stepsize αn may be non-increasing when n is large. If ηn ≡ 0, the step size in
Algorithm 3.1 reduces to the one in [9].

Lemma 3.2. Let {zn}, {wn} and {yn} be the sequences generated by Algorithm
3.1, then

d2(zn, p) ≤ d2(wn, p)− (1− α2
n

µ2

α2
n+1

)d2(yn, wn).

Proof. Let p ∈ Ω, then by applying Lemma 2.1, step 1 of Algorithm 3.1 and
yn = PC(expwn

(−αnF (wn))), we have

⟨exp−1
yn expwn

(−αnF (wn)), exp
−1
yn p⟩ = ⟨exp−1

yn wn − αnPyn,wnF (wn), exp
−1
yn p⟩ ≤ 0,

that is,

⟨exp−1
yn wn, exp

−1
yn p⟩ ≤ αn⟨Pyn,wnF (wn), exp

−1
yn p⟩. (3.8)

Since p ∈ Ω, we obtain that ⟨F (p), exp−1
p yn⟩ ≥ 0. Using the pseudomonotone

property of F , we obtain that ⟨F (yn), exp
−1
yn p⟩ ≤ 0. Thus,

⟨F (yn)− Pyn,wnF (wn), exp
−1
yn p⟩ = ⟨F (yn), exp

−1
yn p⟩ − ⟨Pyn,wnF (wn), exp

−1
yn p⟩

≤ −⟨Pyn,wnF (wn), exp
−1
yn p⟩. (3.9)

By considering the geodesic triangle ∆(wn, yn, p) and its comparison triangle

∆(w
′
n, y

′
n, p

′
). It follows from Lemma 2.3, that d(wn, p) = ∥w′

n − p
′∥, d(yn, p) =

∥y′
n − p

′∥ and d(wn, yn) = ∥w′
n − y

′
n∥. From Algorithm 3.1, we have zn =

expyn αn(Pyn,wnF (wn) − F (yn)). Thus the comparison point of zn is z
′
n = y

′
n +
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αn(F (w
′
n) − F (y

′
n)) ∈ R2. Suppose that d(zn, yn) = ∥z′

n − y
′
n∥, then apply-

ing the diffeomorphism of the exp map, we obtain ∥F (yn) − Pyn,wnF (wn)∥ =

( 1
αn

)d(zn, yn) = ( 1
αn

)∥z′
n − y

′
n∥ = ∥F (y

′
n)− F (w

′
n)∥.

By applying Lemma 2.4 (ii), we have

d2(zn, p) ≤ ∥z′
n − p

′∥

= ∥y′
n + αn(F (w

′
n)− F (y

′
n))− p∥

= ∥y′
n − p

′∥2 + α2
n∥F (w

′
n)− F (y

′
n)∥2 + 2αn⟨F (w

′
n)− F (y

′
n), y

′
n − p

′⟩

= ∥y′
n − w

′
n∥2 + ∥w′

n − p
′∥2 + 2⟨y′

n − w
′
n, w

′
n − p

′⟩+ α2
n∥F (w

′
n)− F (y

′
n)∥2

+ 2αn⟨F (w
′
n)− F (y

′
n), y

′
n − p

′⟩

= ∥w′
n − p

′∥2 + ∥y′
n − w

′
n∥2 − 2⟨y′

n − w
′
n, y

′
n − w

′
n⟩+ 2⟨y′

n − w
′
n, y

′
n − p

′⟩

+ α2
n∥F (w

′
n)− F (y

′
n)∥2 + 2αn⟨F (w

′
n)− F (y

′
n), y

′
n − p

′⟩

= ∥w′
n − p

′∥2 − ∥y′
n − w

′
n∥2 + α2

n∥F (y
′
n)− F (w

′
n)∥2 + ⟨2y′

n − 2w
′
n

+ 2αnF (w
′
n)− 2αnF (y

′
n), y

′
n − p

′⟩
= d(wn, p)− d2(yn, wn) + α2

n∥F (yn)− Pyn,wnF (wn)∥2

+ ⟨2w′
n − 2y

′
n + 2αnF (y

′
n)− 2αnF (w

′
n), p

′ − y
′
n⟩. (3.10)

Set χ = 2 exp−1
yn wn + 2αn(F (yn)− Pyn,wnF (wn)) ∈ TyM. Let v = expyn χ, hence

the comparison point of v is v
′
= 2w

′
n − y

′
n + 2αnF (y

′
n) − 2αnF (w

′
n). Now

consider the geodesic triangle ∆(b, p, yn) and its comparison triangle ∆(b
′
, p

′
, y

′
n).

Let ϑ, ϑ
′
be the angles of the vertices yn and y

′
n respectively. By Lemma 2.4 (i),

we get ϑ
′ ≥ ϑ. Therefore, we obtain from Lemma 2.3 and (2.5), we have

⟨v′ − y
′
n, p

′ − y
′
n⟩ = ∥v′ − y

′
n∥ ∥p′ − y

′
n∥ cosϑ

′

= d(v, yn)d(p, yn) cosϑ
′

≤ d(v, yn)d(p, yn) cosϑ

= ⟨exp−1
yn v, exp−1

yn p⟩.
Thus, we obtain

⟨2w′
n − 2y

′
n + 2αnF (y

′
n)− 2αnF (w

′
n), p

′ − y
′
n⟩ ≤ ⟨2 exp−1

yn wn + 2αn(F (yn)

− Pyn,wnF (wn)), exp
−1
yn p⟩. (3.11)

It follows from (3.10) and (3.11) that

d2(zn, p) ≤ d2(wn, p)− d2(yn, wn) + α2
n∥F (yn)− Pyn,wnF (wn)∥2

+ ⟨2w′
n − 2y

′
n + 2αnF (y

′
n)− 2αnF (w

′
n), p

′ − y
′
n⟩

≤ d2(wn, p)− d2(yn, wn) + α2
n∥F (yn)− Pyn,wnF (wn)∥2

+ ⟨2 exp−1
yn wn + 2αn(F (yn)− Pyn,wnF (wn)), exp

−1
yn p⟩

= d2(wn, p)− d2(yn, wn) + α2
n∥F (yn)− Pyn,wnF (wn)∥2

+ 2⟨exp−1
yn wn, exp

−1
yn p⟩

+ 2αn⟨F (yn)− Pyn,wnF (wn), exp
−1
yn p⟩. (3.12)
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On substituting (3.8) and (3.9) into (3.12), we obtain

d2(zn, p) ≤ d2(wn, p)− d2(yn, wn) + α2
n∥F (yn)− Pyn,wnF (wn)∥2

+ 2αn⟨Pyn,wnF (wn), exp
−1
yn p⟩ − 2αn⟨Pyn,wnF (wn), exp

−1
yn p⟩

= d2(wn, p)− d2(yn, wn) + α2
n∥Pyn,wnF (wn)− F (yn)∥2. (3.13)

By applying (3.6) in (3.13), we get

d2(zn, p) ≤ d2(wn, p) + α2
n

µ2

α2
n+1

d2(yn, wn)− d2(yn, wn)

≤ d2(wn, p)− (1− α2
n

µ2

α2
n+1

)d2(yn, wn) (3.14)

≤ d(wn, p). (3.15)

Hence, the proof complete. □

Lemma 3.3. Let {xn} be a sequence generated by Algorithm 3.1, then the se-
quence {xn} is bounded.

Proof. Let p ∈ Ω, γ1n : [0, 1] → M and γ2n : [0, 1] → M be geodesic spaces such
that γ1n(0) = f(xn), γ

1
n(1) = un and γ2n(0) = zn, γ

2
n(1) = Tzn. Then, we have

from Algorithm 3.1 that

d(un, p) = d(γ2n(1− δn), p)

≤ (1− δn)d(γ
2
n(0), p) + δnd(γ

2
n(1), p)

≤ (1− δn)d(zn, p) + δnd(T (zn), Tp)

≤ (1− δn)d(zn, p) + δnd(zn, p)

= d(zn, p). (3.16)

Similarly, since xn+1 = γ1n(1− βn), we get

d(xn+1, p) = d(γ1n(1− βn), p)

≤ βnd(γ
1
n(0), p) + (1− βn)d(γ

1
n(1), p)

≤ d(f(xn), p) + (1− βn)d(un, p)

≤ βn
[
d(f(xn), f(p)) + d(f(p), p)

]
+ (1− βn)d(zn, p)

≤ βn
[
kd(xn, p) + d(f(p), p)

]
+ (1− βn)d(wn, p). (3.17)

By considering the geodesic triangles ∆(wn, xn, p) and ∆(xn, xn−1, p) with their

respective comparison triangle ∆(w
′
n, x

′
n, p

′
) ⊆ R2. Then by Lemma 2.3, we have

d(wn, xn) = ∥w′
n − x

′
n∥, d(wn, p) = ∥w′

n − p
′∥ and d(xn, xn−1) = ∥x′

n − x
′
n−1∥.

Now, by applying step 1 of Algorithm 3.1, we have

d(wn, p) = ∥w′
n − p

′∥

= ∥x′
n + θn(x

′
n − x

′
n−1)− p

′∥

≤ ∥x′
n − p

′∥+ θn∥x
′
n − x

′
n−1∥

= ∥x′
n − p

′∥+ βn · θn
βn

∥x′
n − x

′
n−1∥. (3.18)
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Since θn
βn

∥x′
n−x

′
n−1∥ = θn

βn
d(xn, xn−1) → 0 as n → ∞, then there exists a constant

N1 > 0 such that θn
βn

d(xn, xn−1) ≤ N1. Thus, we obtain from (3.18) that

d(wn, p) ≤ d(xn, p) + βnN1. (3.19)

Observe that,

d2(wn, p) = ∥w′
n − p

′∥2

≤ ∥x′
n − p

′∥+ θn∥x
′
n − x

′
n−1∥

= ∥x′
n − p

′∥2 + 2θn∥x
′
n − p

′∥ ∥x′
n − x

′
n−1∥+ θ2n∥x

′
n − x

′
n−1∥2

= ∥x′
n − p

′∥2 + θn∥x
′
n − x

′
n−1∥

[
2∥x′

n − p
′∥+ θn∥x

′
n − x

′
n−1∥

]
. (3.20)

It then follows that 2∥x′
n−p

′∥+ θn∥x
′
n−x

′
n−1∥ = 2d(xn, p)+ θnd(xn, xn−1) ≤ N2

for some constant N2 > 0. Thus, we obtain from (3.20), that

d2(wn, p) ≤ d2(xn, p) + θnd(xn, xn−1)N2. (3.21)

On substituting (3.19) into (3.17), we obtain

d(xn+1, p) ≤ βn
[
kd(xn, p) + d(f(p), p)

]
+ (1− βn) [d(xn, p) +N1]

= (1− βn(1− k))d(xn, p) + βn

[
(1− k)

d(f(p), p) +N1

1− k

]
...

≤ max

{
d(xn, p),

d(f(p), p) +N1

1− k

}
.

By induction, we obtain that

d(xn+1, p) ≤ max

{
d(x1, p),

d(f(p), p) +N1

1− k

}
.

Hence, the sequence {xn} is bounded. Consequently, the sequences {wn}, {yn},
{zn}, {un} and {Tzn} are bounded. □

Theorem 3.1. Let f : C → C be a contraction with constant k ∈ (0, 1) and
assume conditions (D1)-(D4) holds. Then the sequence {xn} generated by Al-
gorithm 3.1 converges to p ∈ Ω, where p = PΩf(p) and PΩ is the nearest point
projection of C onto Ω.

Proof. Let p ∈ Ω, then using Proposition 2, we obtain

d2(un, p) = d(γ2n(1− δn), p)

≤ (1− δn)d
2(γ2n(0), p) + δnd

2(γ2n(1), p)

− δn(1− δn)d
2(γ2n(0), γ

2
n(1))

≤ (1− δn)d
2(zn, p) + δnd

2(T (zn), Tp)

− δn(1− δn)d
2(zn, T zn)

≤ (1− δn)d
2(zn, p) + δnd

2(zn, p)

− δn(1− δn)d
2(zn, T zn)

= d2(zn, p)− δn(1− δn)d
2(zn, T zn). (3.22)
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By substituting (3.14) and (3.21) into (3.22), we have

d2(un, p) ≤ d2(wn, p)− (1− α2
n

µ2

α2
n+1

)d2(yn, wn)− δn(1− δn)d
2(zn, T zn)

≤ d2(xn, p) + θnd(xn, xn−1)N2 − (1− α2
n

µ2

α2
n+1

)d2(yn, wn)

− δn(1− δn)d
2(zn, T zn). (3.23)

Fix n ≥ 1 and let v = f(xn), u = un and w = f(p). Consider the follow-
ing geodesic triangles with their respective comparison triangles ∆(v, u, w) and

∆(v
′
, u

′
, w

′
),∆(w, u, v) and ∆(w

′
, u

′
, v

′
),∆(w, u, p) and ∆(w

′
, u

′
, p

′
). Applying

Lemma 2.3, we get d(v, u) = ∥v′ − u
′∥, d(v, w) = ∥v′ − w

′∥, d(v, p) = ∥v′ −
p
′∥, d(u,w) = ∥u′ − w

′∥ and d(w, p) = ∥w′ − p
′∥. From Algorithm 3.1, we have

xn+1 = expv(1 − βn) exp
−1
v u. The comparison point of xn+1 ∈ R2 is x

′
n+1 =

βnv
′
+(1−βn)u

′
. Let ϕ and ϕ

′
denote the angle and comparison angle at p and p

′

in the triangles ∆(w, xn+1, p) and ∆(y
′
, x

′
n+1, p

′
) respectively. Therefore, ϕ ≤ ϕ

′

and cosϕ
′ ≤ cosϕ.

By applying Lemma 2.4 and the property of f, we obtain

d2(xn+1, p) ≤ ∥x′
n+1 − p

′∥2

= ∥βn(v
′ − p

′
) + (1− βn)(u

′ − p
′
)∥2

≤ ∥βn(v
′ − w

′
) + (1− βn)(u

′ − p
′
)∥2 + 2βn⟨x

′
n+1 − p

′
, w

′ − p
′⟩

≤ (1− βn)∥u
′ − p

′∥2 + βn∥v
′ − w

′∥2 + 2βn∥x
′
n+1 − p

′∥∥w′ − p
′∥ cosϕ′

≤ (1− βn)d
2(u, p) + βnd

2(v, w) + 2βnd(xn+1, p)d(w, p) cosϕ

= (1− βn)d
2(un, p) + βnd

2(f(xn), f(p)) + 2βnd(xn+1, p)d(w, p) cosϕ.
(3.24)

It is obvious that d(xn+1, p)d(f(p), p) cosϕ = ⟨exp−1
p f(p), exp−1

p xn+1⟩, then by
substituting (3.23) into (3.24), we obtain

d2(xn+1, p) ≤ (1− βn)d
2(un, p) + βnd

2(f(xn), f(p)) + 2βn⟨exp−1
p f(p), exp−1

p xn+1⟩
≤ (1− βn)d

2(xn, p) + (1− βn)θnd(xn, xn−1)N2

− (1− βn)(1− α2
n

µ2

α2
n+1

)d2(yn, wn)

+ βnd
2(f(xn), f(p)) + 2βn⟨exp−1

p f(p), exp−1
p xn+1⟩

− (1− βn)δn(1− δn)d
2(zn, T zn)

=
(
1− βn(1− k)

)
d2(xn, p)

+ βn(1− k)

[ θn
βn

d(xn, xn−1)N2 + 2⟨exp−1
p f(p), exp−1

p xn+1⟩
(1− k)

]
− (1− βn)(1− α2

n

µ2

α2
n+1

)d2(yn, wn)− (1− βn)δn(1− δn)d
2(zn, T zn)

(3.25)

=
(
1− βn(1− k)

)
d2(xn, p) + βn(1− k)Zn, (3.26)



INERTIAL TSENG METHOD WITH NONDECREASING ADAPTIVE STEPSIZE . . . 191

where

Zn =

[ θn
βn

d(xn, xn−1)N2 + 2⟨exp−1
p f(p), exp−1

p xn+1⟩
(1− k)

]
− (1− βn)(1− α2

n

µ2

α2
n+1

)d2(yn, wn)

− (1− βn)δn(1− δn)d
2(zn, T zn).

From (3.25), we obtain

(1− βn)(1− α2
n

µ2

α2
n+1

)d2(yn, wn)

− (1− βn)δn(1− δn)d
2(zn, T zn)

≤ d2(xn, p)− d2(xn+1, p)

+ βn(1− k)N3, (3.27)

where N3 := sup
n∈N

Zn.

To show that d(xn, p) → 0 as n → ∞. Let an = d(xn, p) and dn = βn(1 − k). It
is very easy to see that the inequality (3.26) satisfies

an+1 ≤ (1− dn)an + dnbn.

In view of Lemma 2.7, we claim that lim sup
k→∞

Znk
≤ 0 for a subsequence {ank

} of

{an} satisfying

lim inf
n→∞

(ank+1
− ank

) ≥ 0.

Now, from (3.27), we get

lim sup
k→∞

[
(1− βnk

)

(
1− αnk

µ2

αnk+1

)
d2(ynk

, wnk
)

+ (1− βnk
)δnk

d2(znk
, T (znk

))

]
≤ lim sup

k→∞

[
d2(xnk

, p)− d2(xnk+1, p) + βnk
(1− k)N3

]
= − lim inf

k→∞
(d2(xnk+1

, p)− d2(xnk
, p))

≤ 0. (3.28)

By applying the condition on βnk
, δnk

and the fact that

lim
k→∞

(
1− αnk

µ2

α2
nk+1

)
= 1− µ2 > 0,

thus, we obtain that

lim
k→∞

d(ynk
, wnk

) = 0 = lim
k→∞

d(znk
, T (znk

)). (3.29)
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From Algorithm 3.1 and replacing xnk
with p in (3.18), it is clear that

lim
k→∞

d(wnk
, xnk

) ≤ lim
k→∞

βnk
· θnk

βnk

∥x′
nk

− x
′
nk−1∥

≤ lim
k→∞

βnk
· θnk

βnk

d(xnk
, xnk−1)

= 0. (3.30)

The following are easy to establish from Algorithm 3.1, (3.29) and (3.30):

lim
k→∞

d(unk
, znk

) = 0,

lim
k→∞

d(xnk+1, unk
) = 0,

lim
k→∞

d(znk
, ynk

) = 0,

lim
k→∞

d(xnk+1, znk
) = 0,

lim
k→∞

d(xnk+1, ynk
) = 0,

lim
k→∞

d(xnk+1, wnk
) = 0,

lim
k→∞

d(ynk
, xnk

) = 0,

lim
k→∞

d(xnk+1, xnk
) = 0.

(3.31)

Since {xnk
} and {ynk

} are bounded, there exist subsequences {xnkl
} and {ynkl

}
which converge to x∗. Using the fact that ynkl

= PC(expwnkl

(−αnkl
F (wnkl

)) and

by Lemma 2.1, we get

⟨exp−1
ynk−l

expwnkl

(−αnkl
F (wnkl

)), exp−1
ynkl

x⟩

= ⟨exp−1
ynkl

wnkl
− αnkl

Pynkl
, wnkl

F (wnkl
),

exp−1
ynkl

x⟩ ≤ 0. (3.32)

Using Remark 2.2 and (2.1), the inequality (3.32) becomes

0 ≥ ⟨exp−1
ynkl

wnkl
− αnkl

Pynkl
, wnkl

F (wnkl
), exp−1

ynkl

x⟩

= ⟨exp−1
ynkl

wnkl
, exp−1

ynkl

x⟩

− αnkl
⟨Pynkl

, wnkl
F (wnkl

), exp−1
ynkl

x⟩

≥ ⟨exp−1
ynkl

wnkl
, exp−1

ynkl

x⟩

− αnkl
⟨Pynkl

, wnkl
F (wnkl

), exp−1
ynkl

wnkl
⟩

− αnkl
⟨Pynkl

, wnkl
F (wnkl

), Pynkl
, wnkl

exp−1
wnkl

x⟩

= ⟨exp−1
ynkl

wnkl
, exp−1

ynkl

x⟩

− αnkl
⟨Pynkl

, wnkl
F (wnkl

), exp−1
ynkl

wnkl
⟩

− αnkl
⟨F (wnkl

), exp−1
wnkl

x⟩.
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In view of Lemma 2.2, the Lipschitz continuity of F and lim
l→∞

αnkl
= α > 0, it

follows that

⟨F (x∗), exp−1
x∗ x⟩ ≥ 0, ∀ x ∈ C.

Hence, x∗ ∈ V IP (C,F ). Also, by applying (3.29), we have that x∗ ∈ F (T ).
Therefore, we conclude that x∗ ∈ Ω.
Next, we claim that lim sup

k→∞
Znk

≤ 0. To establish this, we need to show that

lim sup
k→∞

⟨exp−1
p f(p), exp−1

p xnk+1⟩ ≤ 0.

Since {xnk
} is bounded, there exists a subsequence {xnkl

} of {xnk
} which con-

verges to x∗ ∈ M such that

lim
l→∞

⟨exp−1
p f(p), exp−1

p xnkl
⟩ = lim sup

k→∞
⟨exp−1

p f(p), exp−1
p xnk

⟩

= ⟨exp−1
p f(p), exp−1

p x∗⟩
≤ 0. (3.33)

By substituting (3.33) into (3.26) and applying Lemma 2.7, we conclude that
{xn} converges to p ∈ Ω. □

4. Numerical example

In this section, we present two numerical examples in the framework of Hadamard
manifolds to illustrate the performance of our iterative method. Let M := R++ =
{u ∈ R : u > 0} and (R++, ⟨., .⟩) be the Riemannian manifold with the Riemann-
ian metric ⟨., .⟩ defined by

⟨x, y⟩ := 1

u2
xy, (4.1)

for all vectors x, y ∈ TuM, where TuM is the tangent space at x ∈ M. For u ∈ M,
the tangent space TuM at u equals R. Also, the parallel transport is known as
the identity mapping. The Riemannian distance (see 35) d : M × M → R+ is
defined by

d(x, y) := | ln x

y
|,∀ x, y ∈ M. (4.2)

Then (R++, ⟨., .⟩) is an Hadamard manifold, and the unique geodesic ω : R → M
with initial value ω(0) = x with v = ω′(0) ∈ TxM is defined by ω(t) := xe(

vt
x
). In

addition, the inverse exponential map is defined by

exp−1
x y = ω′(0) = x

ln y

x
. (4.3)

Example 4.1. Let C = [1, 2] be a geodesic convex subset of R+ and F : C → R
be a single-valued vector field defined by

Fx := −x ln
2

x
,∈ C (4.4)
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Now, let x, y ∈ C and ⟨Fx, exp−1
x y⟩ ≥ 0. Then we get

⟨Fy, exp−1
y x⟩ ≤ ⟨Fy, exp−1

y x⟩+ ⟨Fx, exp−1
x y⟩

=
1

y2

(
− y ln

2

y

)(
y ln

x

y

)
+

1

x2

(
− x ln

2

x

)(
x ln

y

x

)
=

(
− ln

2

y

)(
ln

x

y

)
+

(
− ln

2

x

)(
ln

y

x

)
= − ln 2 ln

x

y
+ ln y ln

x

y
− ln 2 ln

y

x
+ lnx ln

y

x

= ln y ln
x

y
+ lnx ln

y

x

= (lnx ln y − ln2 y + lnx ln y − ln2 x)

= − ln2
x

y

≤ 0. (4.5)

Hence, we conclude that F is pseudomonotone and 1-Lipschitz continuous. There-
fore, the variational inequality problem has a unique solution, i.e

⟨Fp, exp−1
p y⟩ = 1

p2

(
− p ln

2

p

)(
p ln

y

p

)
= − ln

2

p
ln

y

p
≥ 0,∀y ∈ C

⇔ p = 2. (4.6)

We deduce that V IP (F,C) = {2}, therefore Ω ̸= ∅. Let f be a continuous
mapping and T be a nonexpansive mapping defined by f(x) = 1

2x and T (x) = x

for all x ∈ C. Choose ηn = 100
(n+1)(1.1)

, βn = 0.1
n+1 , δn = n

3n+7 , µ = 0.5, ϵn = (12)
n

and αn = 1
2 −

1
n+3 for Khammahawong et al. [16, Algorithm 1]. The termination

criterion is d(xn, xn+1) ≤ ϵ. For this numerical experiment we take x0 = 1,
x1 = 1.1 and compare our algorithm with [16, Algorithm 1] with ϵ = 10−3 and
ϵ = 10−4.

Example 4.2. Let C = [1, 10] be a geodesic convex subset of R+ and F : C → R
be a single-valued vector field defined by

Fx = x lnx, ∀x ∈ C (4.7)

Now let x, y ∈ C and ⟨Fx, exp−1
x y⟩ ≥ 0. Then we have

⟨Fy, exp−1
y x⟩ ≤ ⟨Fy, exp−1

y x⟩+ ⟨Fx, exp−1
x y⟩

=
1

y2
· y ln y · y ln x

y
+

1

x2
· x lnx · x ln y

x

= −(ln y − lnx)2

= − ln2
y

x
≤ 0.
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Figure 1. Numerical report for Example 4.1.

Hence, F is pseudomonotone. Also, the variational inequality problem has a
unique solution i.e

⟨Fp, exp−1
p q⟩ = 1

p2
(p ln p) · p · ln q

p

= ln p ln
q

p
≥ 0, ∀ q ∈ C

⇐⇒ p = 1. (4.8)
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Thus, Ω ̸= ∅. For this example, choose ηn = 100
(n+1)(1.1)

, βn = 0.1
100n+1 , δn = n

3n+7 ,

µ = 0.5, ϵn = (12)
n and αn = 1

2 − 1
n+3 for Khammahawong et al. [16, Algorithm

1]. The termination criterion is d(xn, xn+1) ≤ ϵ. For this numerical experiment
we take ϵ = 10−4 and compare our algorithm with Khammahawong et al. [16,
Algorithm 1] with varying initial points x0 and x1. It can be seen from figures
that our iterative method converges faster that of Khammahawong et al. [16].

1 2 3 4 5 6 7 8
Number of iterations

0

0.5

1

1.5

2

2.5

3

E
n

Algorithm 3.3
Khammahawong et al. Alg

0 5 10 15 20 25 30
Number of iterations

0

0.5

1

1.5

2

2.5

3

3.5

4

E
n

Algorithm 3.3
Khammahawong et al. Alg

Figure 2. Numerical report for Example 4.2. Left: x0 = 0.8 and
x1 = 0.5; Right: x0 = 1.2 and x1 = 0.9.
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5. Conclusion

In this article, we considered an inertial extrapolation method which is known
to speed up the rate of convergence of iterative method together with a Tseng’s
method to solve variational inequality problem involving pseudomonotone func-
tion and fixed point of a nonexpansive mapping in the settings of a Hadamard
manifold. We employed a self-adaptive procedure which generates dynamic step-
sizes converging to a positive constant. Several examples were illustrated and
compared with the result of [16].
To generalize problem (1.1) in our future research, we will consider VIP involving
quasi-monotone function together with a projection and contraction method in
the setting of Hadamard manifolds.
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