Proceedings of the Institute of Mathematics and Mechanics,
National Academy of Sciences of Azerbaijan

Volume 50, Number 2, 2024, Pages 200-212
https://doi.org/10.30546/2409-4994.2024.50.2.200

ON THE CLASS OF n-QUASI-m-SYMMETRIC OPERATORS
SOUHAIB DJABALLAH AND MESSAOUD GUESBA

Abstract. The aim of this paper is to extend some properties of m-
symmetric operators to the class of n—quasi—m—symmetry. It is shown
that if T"is an n; —quasi—m—symmetry and S is an ne—quasi-I-symmetry
such that 7" and S are double commuting, then T'S is an n—quasi—(m+
I — 1)—symmetry where n = max{ni,ns}. Also we study some spectral
properties and Cy—semigroup of this class.

1. Introduction

Let H be a complex Hilbert space, and B(?) denote to the algebra of all
bounded linear operators on H. For every T' € B(H), we denote T, N(T') and
R(T) the adjoint, the null space and the range of T, respectively. As usual M
denotes the closure of M C #H, while o(T'), 0,(T") and o4,(T) stand for the spec-
trum, the point spectrum and the approximate point spectrum of T, respectively.

An operator T' € B(#H) is said to be m-isometry for some positive integer m if

i(_l)mfk ( ZL ) TR TR = 0,

k=0

where < ;? is the binomial coefficient. This class has been generalized to the

class of n-quasi-m-isometry i.e., T is an n-quasi-m-isometry if

T+ (kzm::o(—nm’f ( ’Z ) T*ka> T" =0,

for some positive integers m and n. This class has been studied in [2, 4, 8, 10, 13].
Let m be a positive integer. T' € B(H) is said to be m-symmetry if it satisfies

m
am(T) = Z(_l)m—k < ZL ) T*(m=k)k _
k=0
For m = 1, we obtain that T is selfadjoint. Moreover, if T is selfadjoint, then
T is m-symmetric for every positive integer m; hence the class of m-symmetry
is a generalization of selfadjoint operators. This class has been studied by many
authors see [1, 3, 6, 7, 11, 12, 14].
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In [16] the authors generalize the class of m—symmetry to the class of n-
quasi-m-symmetry where m and n are positive integers, i.e., T is an n-quasi-m-

symmetry if
*n - _1\ym—k m *(m—k)rpk n __
T ( E (—1) < k > T T ) " =0.

k=0
Recall that T is an n-quasi strict m-symmetry if T is an n-quasi-m-symmetry,
and T is not an n-quasi-(m — 1)-symmetry. It is shown that if 7" is an n-quasi-m-
symmetry and R (7™) is dense, then T is an m-symmetric operator [16]. It has
been proved in [16] that T" is an n-quasi-m-symmetric operator if and only if

AT D)
r=(o 7 )
on H = R(T") & N (T*"), where T; is an m-symmetric operator and T3 = 0.
A well-known property of n-quasi-m-symmetries is the power of any n-quasi-
m-symmetry is also an n-quasi-m-symmetry. Moreover, if T' is an n-quasi-m-
symmetry, then 7' is an k-quasi—I—symmetry for £k > n and [ > m.

Our purpose in this paper is to extend the properties of m-symmetry to the
class of n-quasi-m-symmetry and we discuss which properties remain valid and
which properties are not valid for the class of n-quasi-m-symmetry. The paper
is organized as follows. Section 2 begins with some lemmas that are needed
throughout this work. Then we study some properties of m-symmetric operators.
Next we devote our interest to the study of properties of n-quasi-m-symmetries.
Section 3 is dedicated to discuss Cp—semigroup of n-quasi-m-symmetry. More
precisely, we prove that if {T'(t)}+>0 C B(H) is a Co—semigroup on H, then T'(t)
is an n-quasi-m-symmetry for all ¢ > 0 if and only if 7'(¢) is an m-symmetry for
allt > 0.

2. Properties of n-quasi-m-symmetry

First, we present some lemmas which are needed throughout this work.
Let T, S € B(H). T and S are said to be double commuting if 7' commutes with
S and S*.
Lemma 2.1. [5] Let T, S,Q € B(H). Then
(i) If T and Q commutes, then

4@ =3 S 0 () (M) @ e

J

(ii) If T and S are double commuting, then

om(T8) =Y ( Zl ) T, (S) i (T) S™ .
k=0

Lemma 2.2. [5] Let T, S € B(H). Assume that T and S are double commuting.
If T is m—symmetric and S is £-symmetric, then operator T'S is (m + € — 1)-
symmetric.
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Lemma 2.3. [9] Let T € B(H) be an 2m—symmetry. Then T is an (2m —
1)—symmetry.

Proposition 2.1. Let T € B(H) be invertible. If T" and T+ are selfadjoint for
some r € N, then T is selfadjoint.

Proof. Since T is invertible with 7" and 77! are selfadjoint, then
Tr+l — (Tr—l—l)* — (Tr)*T* — TrT*
= T =TT
=T =T.

Therefore, T is selfadjoint. ]
The following example shows that Proposition 2.1 is not necessarily true if T’

is not invertible.
0 0O
100
0 0O
selfadjoint even though 7?2 and T? are selfadjoint, since 7% = T3 = 0.

Example 2.1. Let H = C3?, and T = , it is clear that T is not

Theorem 2.1. Let T € B(H) be an invertible operator. If T" is an m—symmetry
and T? is an l—symmetry with T*"T° = T%T*" for some positive integers r and
s, then T" is an (m + 1 — 1)—symmetry where h = max{r, s} — min{r,s}.
Proof. Assume that r < s, since T"T% = TST" = T"5 then T~ "T° =TT .
Similarly, since T*"T* = T*T*", we deduce that (T*)~"T% = T*(T*)™".

That means T~" and T are double commuting, and since 7" is an m—symmetry,
thus so is 7~". Applying Lemma 2.2 on 7% and 7", we get T" = T5T~" is an
(m + 1 —1)—symmetry where h = s — r. O
Corollary 2.1. Let T € B(H) be an invertible operator. Then we have

(1) If T" is an m—symmetry and T"! is an [—symmetry for some r € N,
such that T*"T™ =TT then T is an (m + 1 — 1)—symmetry.
(2) IfT" is selfadjoint and T™ ! is an m—symmetry, then T is an m—symmetry.

Theorem 2.2. Let T, S € B(H). If T is an ni—quasi—m—symmetry and S is
an no—quasi-l-symmetry such that T and S are double commuting, then T'S is
an n—quasi—(m+1—1)—symmetry, where n = max{ni,na}. Moreover, T'S is an
n—quasi strict (m-+1—1)—symmetry if and only if T*"H"VDay,, 1 (T)T"S*"oy_1(S)
SnH=1 s not the zero operator.

Proof. Since T'S = ST and T*S = ST*, and by Lemma 2.1, we obtain
(T75")" a1 (T'S)(T'S)"

mil m+1—1

— T*ngxn Z ( L ) T*kak(S)(Jém+l_1_k(T)Sm+l_1_anSn.
k=0

For k<l—1,then m+1{—1—k > m, thus for all kK <[ — 1, we have

T*" 11—k (T)T™ = 0.
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For k > 1, then S*"(S)S™ = 0 for all k > 0, hence
(T*S*)" Q11 (TS)(TS)™ = 0.
Similarly, we get
(TS 12 (TS)(TS)™ = T*H="Vq (T)VT"S* ey _1(S)S™H L,

Therefore, T'S is an n—quasi strict (m+1 —1)—symmetry if and only if 7*(+~1)
am-1(T)T™S* y_1(S)S™ =1 is not the zero operator. O

The following example shows that Theorem 2.2 is not necessarily true if 7" and
S are not double commuting.

00O 111
Example 2.2. Let H =C3, and T =1 0 0)Jand S=[1 1 1],bya
020 1 11

simple calculation we obtain that T is an 1—quasi—3—symmetry, and S is clearly
selfadjoint. We have that T" and S are not commuting, then by straightforward
calculation we get that T'S is not a 1—quasi—3—symmetry.

Theorem 2.3. Let T,Q € B(H). If T is an n—quasi—m—symmetry and Q is
a nilpotent operator of order p such that TQ = QT, then T + Q is an (n +p —
1)—quasi—(m + 2p — 2)—symmetry. Furthermore, T + @ is an (n+p — 1)—quasi
strict —(m + 2p — 2)—symmetry if and only if (T* + Q*)"P~1Q*P—Vay,, | (T)
QP YT + Q)"*P~L is not the zero operator.

Proof. Set r=n+p—1,l=m+2p—2and R =T + Q, since TQ = QT and
applying Lemma 2.1, we obtain

R ay(R)R"
ik , - |
@y S0t () (151 ) e met @+ ar
k=0 j=0
r Lk | . o
=D al" Q" (—=1)*brer QY a5 (T)QF Y T,
1=0 k=0 j=0 i—0

r l l—k
Whereai:<i>,bk: k>andck7j:< j )

Note that if & > p or j > p, then Q¥ =0 or Q*/ = 0, thus
QYay—;(T)Q" =0.
Ifk<p—-1andj <p-—1, we obtain
l—k—j=m+2p—-2—-k—j>m+2p—-2—-(p—1)—(p—1)=m.

Since T' is an n—quasi—m—symmetry and () is a nilpotent operator of order p,
we get

TPy (T)T P =0 for i <p-—1.
For p <¢ <n+p—1, we obtain

T*n—l—p—l—iQ*ial_k_j (T)Tn+p—1—iQi =0.
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Then, R*"ay(R)R" = 0 as desired.
Similarly, we obtain

R*Tam+2p—3(R)Rr
= (e (IS (PR R, (1 R
p—1 p—1
Hence T+ Q is an (n+ p — 1)—quasi strict (m + 2p — 2)—symmetry if and only if
(T* + Q*)P=1Q*P=Vq,, (T)QP~ (T + Q)P is not the zero operator. [J

Let H ® ‘H denote the completion, endowed with a reasonable uniform cross-
norm of the algebraic tensor product H ® H of H and H. For T,S € B(H),
T®S € B(H ® H) denotes to the tensor product operator defined by 7" and S.

Lemma 2.4. Let T € B(H). Then T is an n—quasi—m—symmetry if and only
fT®I and I @ T are n—quasi—m—symmetry.
Proof. We have

(T ®I)=an(T)® 1.
Then,
(TRDN"n(TRNTR" =T (an(T)QN(T"RI) =T"an(T)T"® 1.
Hence T is an n—quasi—m—symmetry if and only if T ® I, and the same with

I®T. U

Proposition 2.2. Let T, S € B(H). If T is an n1—quasi—m—symmetry and S
is an ny—quasi—l—symmetry, then T ® S is an n—quasi—(m + 1 — 1)—symmetry
where n = max{ni, na}.

Proof. Since T is an n; —quasi—m—symmetry, and .S is an ny—quasi-l-symmet-ry,
by Lemma 2.4 we obtain that T'® [ is an n;—quasi—m—symmetry, and I ® S is
an ng—quasi—l—symmetry. We observe that

TRS=THI®S)=IxS)(T®I).
Similarly, we obtain
TS =THIeS) =THIS) =I5 (T'®1I).

Hence T® I and I ® S are double commuting, by applying Theorem 2.2 on T ® I
and I ® S, we obtain that 7' ® S is an n—quasi—(m + [ — 1)—symmetry, where
n = max{ni, na}. O

Proposition 2.3. Let T,Q € B(H). If T is an n—quasi—m—symmetry and Q
is a nilpotent of order p, then TR I+ 1® Q is an (n+p — 1)—quasi—(m + 2p —
2)—symmetry.

Proof. Since T is an n—quasi—m—symmetry, then so is T'® I, as () is a nilpotent
of order p, thus I ® @ is a nilpotent of order p as well, we have

TQ=TeNHI®Q)=I2Q)(TxI).

Applying Theorem 2.3 on T'® I and I ® (), we obtain that T® I + I ® Q) is is an
(n+p—1)—quasi—(m + 2p — 2)—symmetry. O
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The following example shows that if T' is an n;—quasi—m—symmetry and S is
an ng—quasi—!—symmetry with 7" and S are double commuting, then 7"+ S is
not necessarily n—quasi—(m + [ — 1)—symmetry.

0 00
Example 2.3. Let H =C?>, T = (1 0 0] and S = I, T is an 1—quasi-3-
0 20
symmetry and S is selfadjoint with 7" and S are double commuting. By a simple
calculation we obtain that T + I is not n—quasi-3-symmetry for any n € N.

Theorem 2.4. Let T, S € B(H). If T is an ni—quasi—m—symmetry and S is
an no—quasi—l—symmetry such that T'S = ST =T*S =ST* =0, then T + S s
an n—quasi—q—symmetry, where n = max{ni,na} and ¢ = max{m,[}.

Proof. Since T'S = ST = 0, then for any strictly positive integer r, we have
T
(T+8)=>" ( : >T”Si =T 45",
i=0
T
(T* + S*)r _ E ( : ) T*(r—z)S*z e + S*T
i=0
Therefore,
al(T+S)

:Zq:(_l)q*k ( Z ) (T*(=k) 4 gHla=k)y(k 1 gk)

q—1
=(=1)IT* + (~1)78* + Y (-1)47* ( Z ) (T*@=k) 1 g*a=k)y(Tk 4 gk)
k=1

+71 + S1.
Since T*S = ST* = 0, we obtain

q—1
ag(T + 8) =(—1)IT* + (~1)78* + Y (-1)*7* < Z ) (T*@=RTk 4 gra=h) gky
k=1

+T7 + S
=0q(T) + ay(S).
We observe that
(T+8)"ag(T+ S)(T+ S)" = (T™" 4+ 5™ ) (ag(T) + ag(S))(T" + S™).
We have T'S = ST =T*S = ST* = 0, then
(T+8)"ag(T+ S)T+ S)" =T"0og(T)T™ + S g(S)S™.

Since n = max{ni,n2} and ¢ = max{m, !}, using the assumption that T is an
ni1—quasi—m—symmetry and S be an ns—quasi—/—symmetry, we get

T ag(T)T" = 5™y (S5)S™ = 0.
Hence (T'+ S)"ay(T + S)(T' + S)" = 0 as required. O
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Proposition 2.4. Let T € B(H) be an n—quasi—2m—symmetry. Then T is an
n—quasi—(2m — 1)—symmetry.

Proof. e If R(T™) is dense, then T is an 2m—symmetry, by Lemma 2.3, we get
that T is an (2m — 1)—symmetry.

o If R(T™) is not dense, then T = ( gl % ) on H=R(T") & N (T*"), where

T1 is an 2m-symmetric operator and 73" = 0.
By Lemma 2.3, we obtain that 77 is an (2m — 1)—symmetry. Hence we get that
T is an n—quasi—(2m — 1)—symmetry. O

Theorem 2.5. Let T € B(H) be an n—quasi—m—symmetry. The following
statements hold:

(1) o(T) C R.

(2) If X € 0p(T) \ {0} i.e., there exists x € H such that Tx = Az, if x ¢
N(T*"), then X € 0,(T™).

(3) If X € 04p(T') \ {0} i.e., there exists a sequence (xj) C H of unit vectors
such that lim (T — XN)x; =0, if ]lggo T*"x; #0, then X € oqp(T).

J—00

Proof. (1) Let A € C\ R. If A is an approximate point spectrum of 7', then
there exists a sequence of unit vectors (z;) C H such that

lim (T — X)z; = 0.

Jj—o0
Then we can easily prove that for any strictly positive integer r

lim (T" — \")z; = 0.

j—o0
Now, we prove that for any strictly positive integers r and s

lim (T2, Toxj) = \'A”.

j—o0
Observe that

(T7 2y, Toxy) — NN | =[(T" 25, Tox5) — (N'wj, Noxj)|

(T"xj, TPxj) — (N, Tx5) + (N'xj, T )

— (N'zj, Nxj)|

=[((T" = A"z, T?xj) + (N'xj, (T° — X*)z;)|

<|(T" = Nz, TPxj)| + (A", (T° — A%)ay)

<|(T" = A1 T || + (A2 [ | (7% =A%)y

<[ TENT" = Al + AT = A7)y

We have
lim (T" — A")z; = lim (T° — A%)z; =0,

j—00 j—00
we deduce that

lim [(T7x;, T%x;) — A\"A°| = 0.

Jj—o0
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Since T' is an n—quasi—m—symmetry, we obtain

= m— m *(n+m— n
Syt (R )

k=0

0

I
NE

m— m n n—+m-—
(ayt () e ),

£
I

0

Since
lim (T7z;, T*2;) = A"\’

j—00

we obtain

0=> (-ym* ( L > R

0
_|\|2n - m—k m kym—k
=AY (-1 ( L ) X
k=0
=\2"(A =)™
Thus,
2" A2 Im(A)™ = 0.
We have A € C\ R, then A # 0, this implies that Im()\) = 0.
This contradicts the hypothesis of A € C\ R. Hence A ¢ 04,(T"), then
oap(T) C R. It follows that 0o(T") C 04,(T) C R. Therefore, o(T) C R.

Let A € 0,(T) \ {0} i.e. there exists x € H such that Tz = Az, and
assume that = ¢ N(T™"). Since T is an n—quasi—m—symmetry, we get

0 :Z(_l)m—k ( Z?, > T*(n+m_k)Tk+n£C

k=0
_ Z(_l)m—k < Zl ) T*(n—&—m—k))\k-‘rnx
k=0

k=0
=(=1)™AVT*(T* — \)™a.

Since A # 0, we obtain
T (T* = \)™z = 0.

Let S € B(H) such that N(S) = {0}. Then N(S") = {0} for any positive
integer r. By induction, for r = 1, we have N(S) = {0}.

Assume that N(S™) = {0}, we prove that N(S"*1) = {0}.

Suppose that there exists a nonzero z € N(S"*1). Using N(S) = N(S") =
{0}, we get

Sy =0= S(8"2) =0=S"2=0=2=0.
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Therefore, N(S™1) = {0} as desired.
If X\ ¢ op(T%), then N(T™ — X\) = {0}, thus N((T™* — \)™) = {0}.
Observe that

T*(T* — A"z = (T* — \)"T*"z = 0 = T*"z = 0.

This contradicts the assumption of z ¢ N(T*"). Hence A € op,(T™).
(3) Let A € 04p(T) \ {0} i.e., there exists a sequence (z;) C H of unit vectors
such that lim (7' — A)z; = 0. Assume that lim 7%"z; # 0.

j—o0 J—o0
Since T' is an n—quasi—m—symmetry,

% m— m *(n+m— m
1> _(-1) ’“(k )T“ DT = 0.
k=0

Hence

nsn il m— m *(m—
e 32 k()

n*n S m— m w(m—
e Y () b

k=0

S m— m *(N—+m— n
13- (k )T<+ k|
k=0

*n, S m— m *(m— n n
S 3 e (O
k=0

< m *(n+m— n n
< () IR - ).
k=0

Note that for every 0 < k < m,

lim [|(T57" = Xz = 0.
J—00

Therefore,
: nrpxn - _aym—k [ T krpx(m—k) . || —
jlggoyu:r > (1) (k>)\T zj| = 0.
k=0
We have

k=0
Since A # 0, we get

lim ||[T"(T* — \)™z;|| = 0.

j—ro0
If X ¢ 04p(T™), then T* — X is bounded from below
de>0, YeeH: ||(T" = Nz| > ¢|z].
We observe that for all x € H
)T = N™al] > el
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Thus,
[T (T = N)™ sl = (T = \)™ Ty | = ™[ T ]
Since limj_,o0 [|T*"(T* — X\)™z;|| = 0, we deduce that

lim |7 || = 0.
j—00

This contradicts the assumption of lim ||7*"x;|| # 0.
Jj—oo

Hence A € 04, (T7).
O

Proposition 2.5. Let T' € B(H) be a hyponormal operator (i.e., T*T >TT* ).
If T is an n—quasi—m—symmetry, then T is selfadjoint.

Proof. By Theorem 2.5, we have o(T) C R. From [15, Corollary 3], it follows
that T is selfadjoint. O

Corollary 2.2. Let T € B(H). If T is a strict n—quasi—m—symmetry, then T
s not hyponormal.

Proposition 2.6. Let T € B(H) be an n—quasi—m—symmetry. If there ezists a
strictly positive integer r < n — 1 such that N(T*") = N(T*"+V), then T is an
r— quasi—m—symmetry.

Proof. Since N(T*") = N(T*("+1)), we can prove that N(T*") = N(T*").

We have T is an n—quasi—m—symmetry, thus

k=0 k
m
=Ty (-1)"* < L ) TP =
k=0
m
:>(T*T Z(_l)mfk ( 7k;n ) T*(mfk)Tk:Tn)* —0
k=0
m
— TN Z(fl)m_k ( ZL > T*kTm—kT'r -0
k=0
m
— T Z(_l)m—k < Zl ) rkpm—kpr _ 0.
k=0
Hence T is an r—quasi—m—symmetry. O

3. Cy—semigroup of n—quasi—m—symmetry

Let {T(t) }+>0 C B(H). {T'(t)}+>0 is said to be Co—semigroup if it satisfies the
following:
(1) T(0) = 1,
(2) T(t+s)=T(t)T(s), for all t,s >0,
(3) limy_,g+ T'(t)x = z, for all x € H in the strong operator topology.
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Lemma 3.1. Let {T'(t)}i>0 C B(H) be a Co—semigroup on H. The following
statements are equivalent:

(i) T(t) is an n—quasi—m—symmetry for all t > 0.

(i) T(t) is an n—quasi—m—symmetry for all t €]0,t'] with t' > 0.

Proof. (i) = (ii) is obvious.

/ t ’
(i1) = (i) For any ¢ > t, there exists r = [] + 1 and s €]0,¢] such that
t /
s Since s €]0,t ], T'(s) is an
n—quasi—m—symmetry, thus 77(s) is an n—quasi—m—symmetry as well. Ob-
serve that T"(s) = T'(rs) = T'(t). Hence T'(t) is an n—quasi—m—symmetry. [

t
t
t = rs, where [t—,] denotes the greatest integer <

Theorem 3.1. Let {T'(t)}+>0 C B(H) be a Co—semigroup on H. Then T'(t) is
an n-quasi-m-symmetry for all t > 0 if and only if T'(t) is an m—symmetry for
allt > 0.

Proof. & If T'(t) is an m—symmetry for all ¢ > 0, then T'(¢) is clearly an n-quasi-
m~symmetry for all ¢ > 0.
e Suppose that T'(¢) is an n—quasi—m—symmetry for all ¢ > 0, then by Lemma
3.1 for all ' > 0, we have T(t) is an n—quasi—m—symmetry for all ¢t €]0,¢].
Observe that for all x € ‘H

> (=pymh ( Z’L ) (T =R (TR ()T (#)2, T (t)z) = 0.

k=0

Hence for all x € R (T™(t)), we have

k=0

Therefore, for all z € (| R (T"(t)), we have
t€]0,t’]

NE

(=1)m—k ( Tk” > (TR )Tk ()2, z) = 0.

=
Il
o

However, we can easily prove that [\ R(T"(t)) = R(T™(t')). Then for all
t€]0,t’]

t €]0,¢'] and for all € R(T™(t')), we have

m
Syt () e ork e ~o
k=0

That means for all t €]0,¢], T'(t) is an m—symmetry on R (T"(¢')). Using Lemma
3.1 again, we obtain that 7'(¢) is an m—symmetry on R (T™(t")) for all ¢ > 0 i.e.

i(—nm—’f ( ;” ) (T* =R (O T* (), 2) = 0, Vo € R(T™(t)), Vt > 0.
k=0
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We observe for all ¢t >0 and x € H

m

> (=t ( Zl ) (TR )T* ()T ()2, T (¢ )z) = 0.
k=0

Now, for all z € H we have
(TR OTROT™ (), T (t )ar) — (TP ()T (b2, )]

=(T* P OTHOT ()2, T (t )x) — (T D (0T (), T"(F )a)
HT T (), T )z) — (TP (O)TH (1), )]
=TT T (¢ ) = TN (O T (), T (t )z)

HT P (OTH (), T (t )z — )|

< TP OTHOT () — T OT* ()| T )l
HIT BT )] | T )a — 2
<(IT*CPOTHT™ ()] + 1T T BT (E )z — .
Since lim T'(s)z = x, we have
s—07t
lim |7tz — x| = lim |T(nt)z —z| = 0.
t' =0+ t' =0+
Therefore,
lim (TR TR )T ()2, T () — (TP ()T (t)z, )| = 0.
t' =0+
Thus, for all t > 0 and z € H
lim (T =F)( AT (), T"(t )z) = 0,
Jim St () e e s
S m m *(n—
N el ( " ) (TR T (), ) = 0,
k:O
Hence T'(t) is an m—symmetry for all ¢ > 0. O
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