ON THE CLASS OF n-QUASI-m-SYMMETRIC OPERATORS

SOUHAIB DJABALLAH AND MESSAOUD GUESBA

Abstract. The aim of this paper is to extend some properties of m symmetric operators to the class of n −quasi−m−symmetry. It is shown that if T is an n_1 -quasi- m -symmetry and S is an n_2 -quasi-l-symmetry such that T and S are double commuting, then TS is an n–quasi– $(m+$ $l-1$)–symmetry where $n = \max\{n_1, n_2\}$. Also we study some spectral properties and C_0 −semigroup of this class.

1. Introduction

Let H be a complex Hilbert space, and $\mathcal{B}(\mathcal{H})$ denote to the algebra of all bounded linear operators on H. For every $T \in \mathcal{B}(\mathcal{H})$, we denote T^* , $N(T)$ and $R(T)$ the adjoint, the null space and the range of T, respectively. As usual \overline{M} denotes the closure of $M \subset \mathcal{H}$, while $\sigma(T)$, $\sigma_p(T)$ and $\sigma_{ap}(T)$ stand for the spectrum, the point spectrum and the approximate point spectrum of T , respectively.

An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be m-isometry for some positive integer m if

$$
\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} T^{*k} T^k = 0,
$$

where $\begin{pmatrix} m \\ k \end{pmatrix}$ k is the binomial coefficient. This class has been generalized to the class of *n*-quasi-*m*-isometry i.e., T is an *n*-quasi-*m*-isometry if

$$
T^{*n}\left(\sum_{k=0}^m (-1)^{m-k} \binom{m}{k} T^{*k} T^k\right) T^n = 0,
$$

for some positive integers m and n. This class has been studied in [2, 4, 8, 10, 13].

Let *m* be a positive integer.
$$
T \in \mathcal{B}(\mathcal{H})
$$
 is said to be *m*-symmetry if it satisfies

$$
\alpha_m(T) = \sum_{k=0}^m (-1)^{m-k} \binom{m}{k} T^{*(m-k)} T^k = 0.
$$

For $m = 1$, we obtain that T is selfadjoint. Moreover, if T is selfadjoint, then T is m-symmetric for every positive integer m; hence the class of m-symmetry is a generalization of selfadjoint operators. This class has been studied by many authors see [1, 3, 6, 7, 11, 12, 14].

²⁰¹⁰ Mathematics Subject Classification. 47B15, 47B20, 47A15.

Key words and phrases. m-symmetry, n-quasi-m-symmetry, C_0 -semigroup.

In [16] the authors generalize the class of m-symmetry to the class of nquasi-m-symmetry where m and n are positive integers, i.e., T is an n-quasi-msymmetry if

$$
T^{*n}\left(\sum_{k=0}^m(-1)^{m-k}\binom{m}{k}T^{*(m-k)}T^k\right)T^n=0.
$$

Recall that T is an *n*-quasi strict m-symmetry if T is an *n*-quasi-m-symmetry, and T is not an n-quasi- $(m-1)$ -symmetry. It is shown that if T is an n-quasi-msymmetry and $R(T^n)$ is dense, then T is an m-symmetric operator [16]. It has been proved in [16] that T is an n-quasi-m-symmetric operator if and only if

$$
T = \left(\begin{array}{cc} T_1 & T_2 \\ 0 & T_3 \end{array}\right)
$$

on $\mathcal{H} = \overline{R(T^n)} \oplus N(T^{*n})$, where T_1 is an *m*-symmetric operator and $T_3^n = 0$. A well-known property of *n*-quasi-*m*-symmetries is the power of any *n*-quasim-symmetry is also an n-quasi-m-symmetry. Moreover, if T is an n-quasi-msymmetry, then T is an k-quasi–l–symmetry for $k \geq n$ and $l \geq m$.

Our purpose in this paper is to extend the properties of m -symmetry to the class of n-quasi-m-symmetry and we discuss which properties remain valid and which properties are not valid for the class of n -quasi- m -symmetry. The paper is organized as follows. Section 2 begins with some lemmas that are needed throughout this work. Then we study some properties of m -symmetric operators. Next we devote our interest to the study of properties of n -quasi-m-symmetries. Section 3 is dedicated to discuss C_0 -semigroup of n-quasi-m-symmetry. More precisely, we prove that if $\{T(t)\}_{t\geq0} \subset \mathcal{B}(\mathcal{H})$ is a \mathcal{C}_0 -semigroup on \mathcal{H} , then $T(t)$ is an *n*-quasi-*m*-symmetry for all $t \geq 0$ if and only if $T(t)$ is an *m*-symmetry for all $t \geq 0$.

2. Properties of n -quasi- m -symmetry

First, we present some lemmas which are needed throughout this work. Let $T, S \in \mathcal{B}(\mathcal{H})$. T and S are said to be double commuting if T commutes with S and S^* .

Lemma 2.1. [5] Let $T, S, Q \in \mathcal{B}(\mathcal{H})$. Then

(i) If T and Q commutes, then

$$
\alpha_m(T+Q) = \sum_{k=0}^m \sum_{j=0}^{m-k} (-1)^k \binom{m}{k} \binom{m-k}{j} Q^{*j} \alpha_{m-k-j}(T) Q^k.
$$

(ii) If T and S are double commuting, then

$$
\alpha_m(TS) = \sum_{k=0}^m \binom{m}{k} T^{*k} \alpha_k(S) \alpha_{m-k}(T) S^{m-k}.
$$

Lemma 2.2. [5] Let $T, S \in \mathcal{B}(\mathcal{H})$. Assume that T and S are double commuting. If T is m–symmetric and S is ℓ -symmetric, then operator TS is $(m + \ell - 1)$ symmetric.

Lemma 2.3. [9] Let $T \in \mathcal{B}(\mathcal{H})$ be an 2m-symmetry. Then T is an $(2m -$ 1)−symmetry.

Proposition 2.1. Let $T \in \mathcal{B}(\mathcal{H})$ be invertible. If T^r and T^{r+1} are selfadjoint for some $r \in \mathbb{N}$, then T is selfadjoint.

Proof. Since T is invertible with T^r and T^{r+1} are selfadjoint, then

$$
T^{r+1} = (T^{r+1})^* = (T^r)^* T^* = T^r T^*
$$

$$
\implies T^{r+1} = T^r T^*
$$

$$
\implies T^* = T.
$$

Therefore, T is selfadjoint. \Box

The following example shows that Proposition 2.1 is not necessarily true if T is not invertible.

Example 2.1. Let $\mathcal{H} = \mathbb{C}^3$, and $T =$ $\sqrt{ }$ $\overline{1}$ 0 0 0 1 0 0 0 0 0 \setminus , it is clear that T is not

selfadjoint even though T^2 and T^3 are selfadjoint, since $T^2 = T^3 = 0$.

Theorem 2.1. Let $T \in \mathcal{B}(\mathcal{H})$ be an invertible operator. If T^r is an m -symmetry and T^s is an l-symmetry with $T^{*}T^{s} = T^{s}T^{*r}$ for some positive integers r and s, then T^h is an $(m+l-1)$ -symmetry where $h = \max\{r,s\} - \min\{r,s\}.$

Proof. Assume that $r \leq s$, since $TT^s = T^sT^r = T^{r+s}$, then $T^{-r}T^s = T^sT^{-r}$. Similarly, since $T^{*}T^{s} = T^{s}T^{*r}$, we deduce that $(T^{*})^{-r}T^{s} = T^{s}(T^{*})^{-r}$. That means T^{-r} and T^s are double commuting, and since T^r is an m -symmetry, thus so is T^{-r} . Applying Lemma 2.2 on T^s and T^{-r} , we get $T^h = T^s T^{-r}$ is an $(m+l-1)$ -symmetry where $h = s - r$. □

Corollary 2.1. Let $T \in \mathcal{B}(\mathcal{H})$ be an invertible operator. Then we have

- (1) If T^r is an m-symmetry and T^{r+1} is an l-symmetry for some $r \in \mathbb{N}$, such that $T^{*r}T^{r+1} = T^{r+1}T^{*r}$, then T is an $(m+l-1)$ -symmetry.
- (2) If T^r is selfadjoint and T^{r+1} is an m-symmetry, then T is an m-symmetry.

Theorem 2.2. Let $T, S \in \mathcal{B}(\mathcal{H})$. If T is an n₁-quasi-m-symmetry and S is an n₂−quasi-l-symmetry such that T and S are double commuting, then TS is an n–quasi– $(m+l-1)$ –symmetry, where $n = \max\{n_1, n_2\}$. Moreover, TS is an $n\!-\!quasi\ strict\ (m\!+\!l\!-\!1)\!-\!symmetry\ if\ and\ only\ if\ T^{*(n+l-1)}\alpha_{m-1}(T)T^nS^{*n}\alpha_{l-1}(S)$ S^{n+l-1} is not the zero operator.

Proof. Since $TS = ST$ and $T^*S = ST^*$, and by Lemma 2.1, we obtain

 $(T^*S^*)^n \alpha_{m+l-1}(TS)(TS)^n$

$$
= T^{*n} S^{*n} \sum_{k=0}^{m+l-1} \binom{m+l-1}{k} T^{*k} \alpha_k(S) \alpha_{m+l-1-k}(T) S^{m+l-1-k} T^n S^n.
$$

For $k \leq l-1$, then $m+l-1-k \geq m$, thus for all $k \leq l-1$, we have

$$
T^{*n} \alpha_{m+l-1-k}(T) T^n = 0.
$$

For $k \geq l$, then $S^{*n} \alpha_k(S) S^n = 0$ for all $k \geq 0$, hence

$$
(T^*S^*)^n \alpha_{m+l-1} (TS)(TS)^n = 0.
$$

Similarly, we get

$$
(T^*S^*)^n \alpha_{m+l-2}(TS)(TS)^n = T^{*(n+l-1)} \alpha_{m-1}(T) T^n S^{*n} \alpha_{l-1}(S) S^{n+l-1}.
$$

Therefore, TS is an n–quasi strict $(m+l-1)$ –symmetry if and only if $T^{*(n+l-1)}$ $\alpha_{m-1}(T)T^{n}S^{*n}\alpha_{l-1}(S)S^{n+l-1}$ is not the zero operator. \Box

The following example shows that Theorem 2.2 is not necessarily true if T and S are not double commuting.

Example 2.2. Let
$$
\mathcal{H} = \mathbb{C}^3
$$
, and $T = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix}$ and $S = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, by a

simple calculation we obtain that T is an 1 -quasi-3-symmetry, and S is clearly selfadjoint. We have that T and S are not commuting, then by straightforward calculation we get that TS is not a 1–quasi–3–symmetry.

Theorem 2.3. Let $T, Q \in \mathcal{B}(\mathcal{H})$. If T is an n-quasi-m-symmetry and Q is a nilpotent operator of order p such that $TQ = QT$, then $T + Q$ is an $(n + p - q)$ 1)−quasi−(m + 2p − 2)−symmetry. Furthermore, $T + Q$ is an $(n + p - 1)$ −quasi strict $-(m+2p-2)$ -symmetry if and only if $(T^*+Q^*)^{n+p-1}Q^{*(p-1)}\alpha_{m-1}(T)$ $Q^{p-1}(T+Q)^{n+p-1}$ is not the zero operator.

Proof. Set $r = n + p - 1$, $l = m + 2p - 2$ and $R = T + Q$, since $TQ = QT$ and applying Lemma 2.1, we obtain

$$
R^{*r}\alpha_l(R)R^r
$$

$$
=(T^* + Q^*)^r \sum_{k=0}^l \sum_{j=0}^{l-k} (-1)^k \binom{l}{k} \binom{l-k}{j} Q^{*j} \alpha_{l-k-j}(T) Q^k (T+Q)^r
$$

$$
= \sum_{i=0}^r a_i T^{*r-i} Q^{*i} \sum_{k=0}^l \sum_{j=0}^{l-k} (-1)^k b_k c_{k,j} Q^{*j} \alpha_{l-k-j}(T) Q^k \sum_{i=0}^r a_i T^{r-i} Q^i,
$$

$$
\binom{r}{k} \sum_{j=0}^l \binom{l}{k} \alpha_{l-k-j}(T+Q^k)
$$

where $a_i = \begin{pmatrix} r \\ \frac{r}{i} \end{pmatrix}$ i $\Big), b_k = \left(\begin{array}{c} l \\ l \end{array}\right)$ k) and $c_{k,j} = \begin{pmatrix} l-k \\ i \end{pmatrix}$ j . Note that if $k \ge p$ or $j \ge p$, then $Q^k = 0$ or $Q^{*j} = 0$, thus

$$
Q^{*j} \alpha_{l-k-j}(T) Q^k = 0.
$$

If $k \leq p-1$ and $j \leq p-1$, we obtain

$$
l-k-j = m+2p-2-k-j \ge m+2p-2-(p-1)-(p-1) = m.
$$

Since T is an n–quasi–m–symmetry and Q is a nilpotent operator of order p, we get

$$
T^{*n+p-1-i}\alpha_{l-k-j}(T)T^{n+p-1-i} = 0 \qquad \text{for } i \le p-1.
$$

For $p \leq i \leq n+p-1$, we obtain

$$
T^{*n+p-1-i}Q^{*i}\alpha_{l-k-j}(T)T^{n+p-1-i}Q^i = 0.
$$

Then, $R^{*r} \alpha_l(R) R^r = 0$ as desired. Similarly, we obtain

$$
R^{*r} \alpha_{m+2p-3}(R) R^r
$$

= $(-1)^{m+p-2} \binom{m+2p-3}{p-1} \binom{m+p-2}{p-1} R^{*r} Q^{*(p-1)} \alpha_{m-1}(T) Q^{p-1} R^r.$

Hence $T + Q$ is an $(n+p-1)$ –quasi strict $(m+2p-2)$ –symmetry if and only if $(T^* + Q^*)^{n+p-1}Q^{*(p-1)}\alpha_{m-1}(T)Q^{p-1}(T+Q)^{n+p-1}$ is not the zero operator. □

Let $\mathcal{H} \otimes \mathcal{H}$ denote the completion, endowed with a reasonable uniform crossnorm of the algebraic tensor product $\mathcal{H} \otimes \mathcal{H}$ of \mathcal{H} and \mathcal{H} . For $T, S \in \mathcal{B}(\mathcal{H})$, $T \otimes S \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$ denotes to the tensor product operator defined by T and S.

Lemma 2.4. Let $T \in \mathcal{B}(\mathcal{H})$. Then T is an n-quasi-m-symmetry if and only *if* $T \otimes I$ and $I \otimes T$ are n-quasi-m-symmetry.

Proof. We have

$$
\alpha_m(T \otimes I) = \alpha_m(T) \otimes I.
$$

Then,

$$
(T \otimes I)^{\ast n} \alpha_m (T \otimes I) (T \otimes I)^n = (T^{\ast n} \otimes I) (\alpha_m (T) \otimes I) (T^n \otimes I) = T^{\ast n} \alpha_m (T) T^n \otimes I.
$$

Hence T is an n-quasi-m-symmetry if and only if $T \otimes I$, and the same with $I \otimes T$.

Proposition 2.2. Let $T, S \in \mathcal{B}(\mathcal{H})$. If T is an n_1 -quasi-m-symmetry and S is an n₂−quasi–l–symmetry, then $T \otimes S$ is an n–quasi– $(m+l-1)$ –symmetry where $n = \max\{n_1, n_2\}$.

Proof. Since T is an n_1 -quasi-m-symmetry, and S is an n_2 -quasi-l-symmet-ry, by Lemma 2.4 we obtain that $T \otimes I$ is an n_1 -quasi-m-symmetry, and $I \otimes S$ is an n_2 −quasi−l−symmetry. We observe that

$$
T \otimes S = (T \otimes I)(I \otimes S) = (I \otimes S)(T \otimes I).
$$

Similarly, we obtain

$$
T \otimes S^* = (T \otimes I)(I \otimes S^*) = (T \otimes I)(I \otimes S)^* = (I \otimes S)^*(T \otimes I).
$$

Hence $T \otimes I$ and $I \otimes S$ are double commuting, by applying Theorem 2.2 on $T \otimes I$ and $I \otimes S$, we obtain that $T \otimes S$ is an n-quasi- $(m + l - 1)$ -symmetry, where $n = \max\{n_1, n_2\}.$

Proposition 2.3. Let $T, Q \in \mathcal{B}(\mathcal{H})$. If T is an n-quasi-m-symmetry and Q is a nilpotent of order p, then $T \otimes I + I \otimes Q$ is an $(n+p-1)-quasi-(m+2p-1)$ $2)-symmetry.$

Proof. Since T is an n–quasi–m–symmetry, then so is $T \otimes I$, as Q is a nilpotent of order p, thus $I \otimes Q$ is a nilpotent of order p as well, we have

$$
T \otimes Q = (T \otimes I)(I \otimes Q) = (I \otimes Q)(T \otimes I).
$$

Applying Theorem 2.3 on $T \otimes I$ and $I \otimes Q$, we obtain that $T \otimes I + I \otimes Q$ is is an $(n+p-1)$ –quasi– $(m+2p-2)$ –symmetry. □

The following example shows that if T is an n_1 -quasi-m-symmetry and S is an n₂−quasi−l−symmetry with T and S are double commuting, then $T + S$ is not necessarily n -quasi- $(m + l - 1)$ -symmetry.

Example 2.3. Let $\mathcal{H} = \mathbb{C}^3$, $T =$ $\sqrt{ }$ $\overline{1}$ 0 0 0 1 0 0 0 2 0 \setminus and $S = I$, T is an 1-quasi-3-

symmetry and S is selfadjoint with T and S are double commuting. By a simple calculation we obtain that $T + I$ is not n-quasi-3-symmetry for any $n \in \mathbb{N}$.

Theorem 2.4. Let $T, S \in \mathcal{B}(\mathcal{H})$. If T is an n₁-quasi-m-symmetry and S is an n₂ $-quasi-1-symmetry$ such that $TS = ST = T^*S = ST^* = 0$, then $T + S$ is an n–quasi–q–symmetry, where $n = \max\{n_1, n_2\}$ and $q = \max\{m, l\}.$

Proof. Since $TS = ST = 0$, then for any strictly positive integer r, we have

$$
(T + S)^r = \sum_{i=0}^r \binom{r}{i} T^{r-i} S^i = T^r + S^r,
$$

$$
(T^* + S^*)^r = \sum_{i=0}^r \binom{r}{i} T^{*(r-i)} S^{*i} = T^{*r} + S^{*r}.
$$

Therefore,

 $\alpha_q(T+S)$

$$
= \sum_{k=0}^{q} (-1)^{q-k} \binom{q}{k} (T^{*(q-k)} + S^{*(q-k)})(T^k + S^k)
$$

= $(-1)^q T^{*q} + (-1)^q S^{*q} + \sum_{k=1}^{q-1} (-1)^{q-k} \binom{q}{k} (T^{*(q-k)} + S^{*(q-k)})(T^k + S^k)$
+ $T^q + S^q$.

Since $T^*S = ST^* = 0$, we obtain

$$
\alpha_q(T+S) = (-1)^q T^{*q} + (-1)^q S^{*q} + \sum_{k=1}^{q-1} (-1)^{q-k} \binom{q}{k} (T^{*(q-k)} T^k + S^{*(q-k)} S^k) +T^q + S^q = \alpha_q(T) + \alpha_q(S).
$$

We observe that

 $(T + S)^{n} \alpha_q (T + S) (T + S)^n = (T^{*n} + S^{*n}) (\alpha_q (T) + \alpha_q (S)) (T^n + S^n).$ We have $TS = ST = T^*S = ST^* = 0$, then

$$
(T + S)^{*n} \alpha_q (T + S)(T + S)^n = T^{*n} \alpha_q (T) T^n + S^{*n} \alpha_q (S) S^n.
$$

Since $n = \max\{n_1, n_2\}$ and $q = \max\{m, l\}$, using the assumption that T is an n_1 −quasi− m −symmetry and S be an n_2 −quasi−l−symmetry, we get

$$
T^{*n} \alpha_q(T) T^n = S^{*n} \alpha_q(S) S^n = 0.
$$

Hence $(T + S)^{n} \alpha_q (T + S) (T + S)^n = 0$ as required.

Proposition 2.4. Let $T \in \mathcal{B}(\mathcal{H})$ be an n-quasi-2m-symmetry. Then T is an $n-quasi-(2m-1)-symmetry.$

Proof. • If $R(T^n)$ is dense, then T is an 2m-symmetry, by Lemma 2.3, we get that T is an $(2m-1)$ −symmetry.

• If $R(T^n)$ is not dense, then $T = \begin{pmatrix} T_1 & T_2 \\ 0 & T \end{pmatrix}$ 0 T_3 on $\mathcal{H} = \overline{R(T^n)} \oplus N(T^{*n}),$ where T_1 is an 2*m*-symmetric operator and $T_3^n = 0$.

By Lemma 2.3, we obtain that T_1 is an $(2m-1)$ −symmetry. Hence we get that T is an n−quasi− $(2m-1)$ −symmetry. □

Theorem 2.5. Let $T \in \mathcal{B}(\mathcal{H})$ be an n-quasi-m-symmetry. The following statements hold:

- (1) $\sigma(T) \subset \mathbb{R}$.
- (2) If $\lambda \in \sigma_p(T) \setminus \{0\}$ i.e., there exists $x \in \mathcal{H}$ such that $Tx = \lambda x$, if $x \notin \mathcal{H}$ $N(T^{*n}),$ then $\lambda \in \sigma_p(T^*)$.
- (3) If $\lambda \in \sigma_{ap}(T) \setminus \{0\}$ i.e., there exists a sequence $(x_j) \subset \mathcal{H}$ of unit vectors such that $\lim_{j\to\infty} (T-\lambda)x_j = 0$, if $\lim_{j\to\infty} T^{*n}x_j \neq 0$, then $\lambda \in \sigma_{ap}(T^*)$.
- *Proof.* (1) Let $\lambda \in \mathbb{C} \setminus \mathbb{R}$. If λ is an approximate point spectrum of T, then there exists a sequence of unit vectors $(x_i) \subset \mathcal{H}$ such that

$$
\lim_{j \to \infty} (T - \lambda)x_j = 0.
$$

Then we can easily prove that for any strictly positive integer r

$$
\lim_{j \to \infty} (T^r - \lambda^r) x_j = 0.
$$

Now, we prove that for any strictly positive integers r and s

$$
\lim_{j \to \infty} \langle T^r x_j, T^s x_j \rangle = \lambda^r \overline{\lambda}^s.
$$

Observe that

$$
\begin{split} |\langle T^r x_j, T^s x_j \rangle - \lambda^r \overline{\lambda}^s| = |\langle T^r x_j, T^s x_j \rangle - \langle \lambda^r x_j, \lambda^s x_j \rangle| \\ = |\langle T^r x_j, T^s x_j \rangle - \langle \lambda^r x_j, T^s x_j \rangle + \langle \lambda^r x_j, T^s x_j \rangle \\ - \langle \lambda^r x_j, \lambda^s x_j \rangle| \\ = |\langle (T^r - \lambda^r) x_j, T^s x_j \rangle + \langle \lambda^r x_j, (T^s - \lambda^s) x_j \rangle| \\ \leq |\langle (T^r - \lambda^r) x_j, T^s x_j \rangle| + |\langle \lambda^r x_j, (T^s - \lambda^s) x_j \rangle| \\ \leq ||(T^r - \lambda^r) x_j|| ||T^s x_j|| + ||\lambda^r x_j|| ||(T^s - \lambda^s) x_j|| \\ \leq ||T^s|| ||(T^r - \lambda^r) x_j|| + |\lambda|^r ||(T^s - \lambda^s) x_j||. \end{split}
$$

We have

$$
\lim_{j \to \infty} (T^r - \lambda^r) x_j = \lim_{j \to \infty} (T^s - \lambda^s) x_j = 0,
$$

we deduce that

$$
\lim_{j \to \infty} |\langle T^r x_j, T^s x_j \rangle - \lambda^r \overline{\lambda}^s| = 0.
$$

Since T is an n -quasi- m -symmetry, we obtain

$$
0 = \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \langle T^{*(n+m-k)} T^{k+n} x_j, x_j \rangle
$$

=
$$
\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \langle T^{k+n} x_j, T^{n+m-k} x_j \rangle.
$$

Since

$$
\lim_{j \to \infty} \langle T^r x_j, T^s x_j \rangle = \lambda^r \overline{\lambda}^s,
$$

we obtain

$$
0 = \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \lambda^{n+k} \overline{\lambda}^{n+m-k}
$$

$$
= |\lambda|^{2n} \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \lambda^{k} \overline{\lambda}^{m-k}
$$

$$
= |\lambda|^{2n} (\lambda - \overline{\lambda})^{m}.
$$

Thus,

$$
2^m |\lambda|^{2n} Im(\lambda)^m = 0.
$$

We have $\lambda \in \mathbb{C} \setminus \mathbb{R}$, then $\lambda \neq 0$, this implies that $Im(\lambda) = 0$. This contradicts the hypothesis of $\lambda \in \mathbb{C} \setminus \mathbb{R}$. Hence $\lambda \notin \sigma_{ap}(T)$, then $\sigma_{ap}(T) \subset \mathbb{R}$. It follows that $\partial \sigma(T) \subset \sigma_{ap}(T) \subset \mathbb{R}$. Therefore, $\sigma(T) \subset \mathbb{R}$. (2) Let $\lambda \in \sigma_p(T) \setminus \{0\}$ i.e. there exists $x \in \mathcal{H}$ such that $Tx = \lambda x$, and

assume that $x \notin N(T^{*n})$. Since T is an n-quasi-m-symmetry, we get

$$
0 = \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} T^{*(n+m-k)} T^{k+n}x
$$

=
$$
\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} T^{*(n+m-k)} \lambda^{k+n}x
$$

=
$$
\lambda^n T^{*n} \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \lambda^k T^{*(m-k)}x
$$

=
$$
(-1)^m \lambda^n T^{*n} (T^* - \lambda)^m x.
$$

Since $\lambda \neq 0$, we obtain

$$
T^{*n}(T^* - \lambda)^m x = 0.
$$

Let $S \in \mathcal{B}(\mathcal{H})$ such that $N(S) = \{0\}$. Then $N(S^r) = \{0\}$ for any positive integer r. By induction, for $r = 1$, we have $N(S) = \{0\}$. Assume that $N(S^r) = \{0\}$, we prove that $N(S^{r+1}) = \{0\}$.

Suppose that there exists a nonzero $x \in N(S^{r+1})$. Using $N(S) = N(S^r)$ $\{0\}$, we get

$$
S^{r+1}x = 0 \Longrightarrow S(S^rx) = 0 \Longrightarrow S^rx = 0 \Longrightarrow x = 0.
$$

Therefore, $N(S^{r+1}) = \{0\}$ as desired. If $\lambda \notin \sigma_p(T^*)$, then $N(T^* - \lambda) = \{0\}$, thus $N((T^* - \lambda)^m) = \{0\}.$ Observe that

$$
T^{*n}(T^* - \lambda)^m x = (T^* - \lambda)^m T^{*n} x = 0 \Longrightarrow T^{*n} x = 0.
$$

This contradicts the assumption of $x \notin N(T^{*n})$. Hence $\lambda \in \sigma_p(T^*)$.

(3) Let $\lambda \in \sigma_{ap}(T) \setminus \{0\}$ i.e., there exists a sequence $(x_j) \subset \mathcal{H}$ of unit vectors such that $\lim_{j \to \infty} (T - \lambda)x_j = 0$. Assume that $\lim_{j \to \infty} T^{*n}x_j \neq 0$.

Since T is an n -quasi- m -symmetry,

$$
\|\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k}T^{*(n+m-k)}T^{n+k}x_j\|=0.
$$

Hence

Hence
\n
$$
\|\lambda^n T^{*n} \sum_{k=0}^m (-1)^{m-k} \binom{m}{k} \lambda^k T^{*(m-k)} x_j\|
$$
\n
$$
=\|\lambda^n T^{*n} \sum_{k=0}^m (-1)^{m-k} \binom{m}{k} \lambda^k T^{*(m-k)} x_j\|
$$
\n
$$
-\|\sum_{k=0}^m (-1)^{m-k} \binom{m}{k} T^{*(n+m-k)} T^{n+k} x_j\|
$$
\n
$$
\leq \|T^{*n} \sum_{k=0}^m (-1)^{m-k} \binom{m}{k} T^{*(m-k)} (T^{k+n} - \lambda^{k+n}) x_j\|
$$
\n
$$
\leq \sum_{k=0}^m \binom{m}{k} \|T^{*(n+m-k)}\| \|(T^{k+n} - \lambda^{k+n}) x_j\|.
$$

Note that for every $0 \leq k \leq m$,

$$
\lim_{j \to \infty} \|(T^{k+n} - \lambda^{k+n})x_j\| = 0.
$$

Therefore,

$$
\lim_{j \to \infty} \|\lambda^n T^{*n} \sum_{k=0}^m (-1)^{m-k} \binom{m}{k} \lambda^k T^{*(m-k)} x_j \| = 0.
$$

We have

$$
\lambda^n T^{*n} \sum_{k=0}^m (-1)^{m-k} \binom{m}{k} \lambda^k T^{*(m-k)} x_j = (-1)^m \lambda^n T^{*n} (T^* - \lambda)^m x_j.
$$

Since $\lambda \neq 0$, we get

$$
\lim_{j \to \infty} ||T^{*n}(T^* - \lambda)^m x_j|| = 0.
$$

If $\lambda \notin \sigma_{ap}(T^*)$, then $T^* - \lambda$ is bounded from below

$$
\exists c > 0, \ \forall x \in \mathcal{H}: \ \| (T^* - \lambda)x \| \ge c \|x\|.
$$

We observe that for all $x \in \mathcal{H}$

$$
||(T^* - \lambda)^m x|| \ge c^m ||x||.
$$

Thus,

$$
||T^{*n}(T^* - \lambda)^m x_j|| = ||(T^* - \lambda)^m T^{*n} x_j|| \ge c^m ||T^{*n} x_j||.
$$

Since $\lim_{j \to \infty} ||T^{*n}(T^* - \lambda)^m x_j|| = 0$, we deduce that

$$
\lim_{j \to \infty} \|T^{*n} x_j\| = 0.
$$

This contradicts the assumption of $\lim_{j\to\infty}||T^{*n}x_j|| \neq 0$. Hence $\lambda \in \sigma_{ap}(T^*)$.

Proposition 2.5. Let $T \in \mathcal{B}(\mathcal{H})$ be a hyponormal operator (i.e., $T^*T \geq TT^*$). If T is an n-quasi-m-symmetry, then T is selfadjoint.

Proof. By Theorem 2.5, we have $\sigma(T) \subset \mathbb{R}$. From [15, Corollary 3], it follows that T is selfadjoint. \Box

Corollary 2.2. Let $T \in \mathcal{B}(\mathcal{H})$. If T is a strict n-quasi-m-symmetry, then T is not hyponormal.

Proposition 2.6. Let $T \in \mathcal{B}(\mathcal{H})$ be an n-quasi-m-symmetry. If there exists a strictly positive integer $r \leq n-1$ such that $N(T^{*r}) = N(T^{*(r+1)})$, then T is an $r-quasi-m-symmetry.$

Proof. Since
$$
N(T^{*r}) = N(T^{*(r+1)})
$$
, we can prove that $N(T^{*r}) = N(T^{*n})$.
\nWe have T is an n -quasi- m -symmetry, thus
\n
$$
T^{*n} \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} T^{*(m-k)} T^k T^n = 0
$$
\n
$$
\implies T^{*r} \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} T^{*(m-k)} T^k T^n = 0
$$
\n
$$
\implies (T^{*r} \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} T^{*(m-k)} T^k T^n)^* = 0
$$
\n
$$
\implies T^{*n} \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} T^{*k} T^{m-k} T^r = 0
$$
\n
$$
\implies T^{*r} \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} T^{*k} T^{m-k} T^r = 0.
$$

Hence T is an r −quasi− m −symmetry. □

3. C_0 -semigroup of n-quasi-m-symmetry

Let $\{T(t)\}_{t\geq0}\subset\mathcal{B}(\mathcal{H})$. $\{T(t)\}_{t\geq0}$ is said to be \mathcal{C}_0 -semigroup if it satisfies the following:

- $(T(1) T(0) = I$,
- (2) $T(t + s) = T(t)T(s)$, for all $t, s \ge 0$,
- (3) $\lim_{t\to 0^+} T(t)x = x$, for all $x \in \mathcal{H}$ in the strong operator topology.

□

Lemma 3.1. Let $\{T(t)\}_{t>0} \subset \mathcal{B}(\mathcal{H})$ be a \mathcal{C}_0 -semigroup on \mathcal{H} . The following statements are equivalent:

(i) $T(t)$ is an n–quasi–m–symmetry for all $t \geq 0$.

(ii) $T(t)$ is an n-quasi-m-symmetry for all $t \in]0,t']$ with $t' > 0$.

Proof. (*i*) \implies (*ii*) is obvious.

(*ii*) \implies (*i*) For any $t \geq t'$, there exists $r = \left[\frac{t}{t'}\right] + 1$ and $s \in]0, t']$ such that $t = rs$, where $\left[\frac{t}{t'}\right]$ denotes the greatest integer $\leq \frac{t}{t'}$ $\frac{t}{t'}$. Since $s \in]0, t'], T(s)$ is an n -quasi-m-symmetry, thus $T^r(s)$ is an n -quasi-m-symmetry as well. Observe that $T^r(s) = T(rs) = T(t)$. Hence $T(t)$ is an n-quasi-m-symmetry. \Box

Theorem 3.1. Let $\{T(t)\}_{t\geq0} \subset \mathcal{B}(\mathcal{H})$ be a \mathcal{C}_0 -semigroup on \mathcal{H} . Then $T(t)$ is an n-quasi-m-symmetry for all $t \geq 0$ if and only if $T(t)$ is an m-symmetry for all $t \geq 0$.

Proof. • If $T(t)$ is an m-symmetry for all $t \geq 0$, then $T(t)$ is clearly an n-quasim-symmetry for all $t \geq 0$.

• Suppose that $T(t)$ is an n-quasi-m-symmetry for all $t \geq 0$, then by Lemma 3.1 for all $t' > 0$, we have $T(t)$ is an n-quasi-m-symmetry for all $t \in]0, t']$. Observe that for all $x \in \mathcal{H}$

$$
\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \langle T^{*(n-k)}(t) T^k(t) T^n(t) x, T^n(t) x \rangle = 0.
$$

Hence for all $x \in \overline{R(T^n(t))}$, we have

$$
\sum_{k=0}^{m} (-1)^{m-k} {m \choose k} \langle T^{*(n-k)}(t) T^{k}(t)x, x \rangle = 0.
$$

Therefore, for all $x \in \bigcap R(T^n(t))$, we have $t \in]0,t']$

$$
\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \langle T^{*(n-k)}(t) T^k(t)x, x \rangle = 0.
$$

However, we can easily prove that $\bigcap \overline{R(T^n(t))} = \overline{R(T^n(t))}$. Then for all $t \in]0,t']$ $t \in]0, t']$ and for all $x \in \overline{R(T^n(t'))}$, we have

$$
\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \langle T^{*(n-k)}(t) T^{k}(t)x, x \rangle = 0.
$$

That means for all $t \in]0, t']$, $T(t)$ is an m-symmetry on $\overline{R(T^n(t'))}$. Using Lemma 3.1 again, we obtain that $T(t)$ is an m-symmetry on $\overline{R(T^n(t'))}$ for all $t > 0$ i.e.

$$
\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \langle T^{*(n-k)}(t) T^k(t)x, x \rangle = 0, \ \forall x \in \overline{R(T^n(t'))}, \ \forall t > 0.
$$

We observe for all $t > 0$ and $x \in \mathcal{H}$

$$
\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \langle T^{*(n-k)}(t) T^k(t) T^n(t')x, T^n(t')x \rangle = 0.
$$

Now, for all
$$
x \in \mathcal{H}
$$
 we have
\n
$$
|\langle T^{*(n-k)}(t)T^{k}(t)T^{n}(t^{'})x, T^{n}(t^{'})x \rangle - \langle T^{*(n-k)}(t)T^{k}(t)x, x \rangle|
$$
\n
$$
= |\langle T^{*(n-k)}(t)T^{k}(t)T^{n}(t^{'})x, T^{n}(t^{'})x \rangle - \langle T^{*(n-k)}(t)T^{k}(t)x, T^{n}(t^{'})x \rangle
$$
\n
$$
+ \langle T^{*(n-k)}(t)T^{k}(t)x, T^{n}(t^{'})x \rangle - \langle T^{*(n-k)}(t)T^{k}(t)x, x \rangle|
$$
\n
$$
= |\langle T^{*(n-k)}(t)T^{k}(t)T^{n}(t^{'})x - T^{*(n-k)}(t)T^{k}(t)x, T^{n}(t^{'})x \rangle
$$
\n
$$
+ \langle T^{*(n-k)}(t)T^{k}(t)x, T^{n}(t^{'})x - x \rangle|
$$
\n
$$
\leq ||T^{*(n-k)}(t)T^{k}(t)T^{n}(t^{'})x - T^{*(n-k)}(t)T^{k}(t)x|| ||T^{n}(t^{'})x||
$$
\n
$$
+ ||T^{*(n-k)}(t)T^{k}(t)x|| ||T^{n}(t^{'})x - x||
$$
\n
$$
\leq (||T^{*(n-k)}(t)T^{k}|| ||T^{n}(t^{'})x|| + ||T^{*(n-k)}(t)T^{k}(t)x||) ||T^{n}(t^{'})x - x||.
$$

Since $\lim_{s\to 0^+} T(s)x = x$, we have

$$
\lim_{t' \to 0^+} ||T^n(t')x - x|| = \lim_{t' \to 0^+} ||T(nt')x - x|| = 0.
$$

Therefore,

$$
\lim_{t' \to 0^+} |\langle T^{*(n-k)}(t) T^k(t) T^n(t')x, T^n(t')x \rangle - \langle T^{*(n-k)}(t) T^k(t)x, x \rangle| = 0.
$$

Thus, for all $t > 0$ and $x \in \mathcal{H}$

$$
\lim_{t' \to 0^+} \sum_{k=0}^m (-1)^{m-k} \binom{m}{k} \langle T^{*(n-k)}(t) T^k(t) T^n(t')x, T^n(t')x \rangle = 0,
$$

$$
\implies \sum_{k=0}^m (-1)^{m-k} \binom{m}{k} \langle T^{*(n-k)}(t) T^k(t)x, x \rangle = 0,
$$

$$
\implies \sum_{k=0}^m (-1)^{m-k} \binom{m}{k} T^{*(n-k)}(t) T^k(t)x = 0.
$$

Hence $T(t)$ is an m-symmetry for all $t \geq 0$. □

Acknowledgments The authors are grateful to the referees for their useful comments and suggestions.

References

- [1] H. O. Alshammari, Extension of m-Symmetric Hilbert Space Operators, J. Math. (2022), Art. ID 5272632, 8 pp.
- [2] O. Beiba El Moctar, M. Guesba and O. A. Mahmoud Sid Ahmed, n-Quasi-(A, m) isometric operatros on A Hilbert space, Bull. Math. Anal. Appl., 12(5) (2020), 8–26.
- [3] M. Chō, J.E. Lee, K. Tanahashi and J. Tomiyama, On [m, C]-symmetric operators, Kyungpook Math. J. 58 (2018), 637–650.
- [4] K. Gherairi, Z. Hajjej, H. Li and H. Regeiba, n-quasi- $A-(m, q)$ -isometry on a Banach space, AIMS Math., 8(12) (2023), 28308-28321.
- [5] C. Gu, M. Stankus. Some results on higher order isometries and symmetries: Products and sums a nilpotent operator. Linear Algebra Appl. 469 (2015), 500-509.
- [6] M. Guesba, Symmetric properties of elementary operators. Novi Sad J. Math. 52(1) (2022), 191-197.
- [7] N. Jeridi, R. Rabaoui, On (A, m)-symmetric operators in a Hilbert space, Results in Math., 74 (2019), 1-33.
- [8] O. A. Mahmoud Sid Ahmed , A. Saddi and K. Gherairi, Some results on higher orders quasi-isometries. Hacet. J. Math. Stat. 49 (2020), 1315–1333.
- [9] S. McCullough, L. Rodman, Hereditary classes of operators and matrices, Amer. Math. Monthly, 104 (1997), 415–430.
- [10] S. Mecheri, T. Prasad, On n-quasi-m-isometric operators. Asian-Eur. J. Math. 9(4) (2016), 1650073 (8 pages).
- [11] M. Salehi, K. Hedayatian, On higher order selfadjoint operators. Linear Algebra Appl., 587 (2020), 358-386.
- [12] J. Shen, F. Zuo and A. Chen, Some results on higher order symmetric operators. Filomat, 37(12) (2023), 3769-3775.
- [13] J. Shen, F. Zuo, Spectral properties of k-quasi-2-isomertic operators, J. Korean Soc. Math. Ed., 22 (2015), 275–283.
- [14] M. Stankus, m-Isometries, n-symmetries and other linear transformations which are hereditary roots. *Integral Equ. Oper. Theory*, **75** (2013), 301-321.
- [15] T. Yoshino, On the spectrum of a hyponormal operator. Tohoku Math. J., 17 (1965), 305-309.
- [16] F. Zuo, S. Mecheri, A class of operators related to m-symmetric operators. Turk. J. Math., 45 (2021), 1300–1309.

Souhaib Djaballah

Department of Mathematics, Operators Theory and PDE Foundations and Applications Laboratory, University of El-Oued, P. O. Box 789, El-Oued 39000, Algeria

E-mail address: souhaibdjaballah@gmail.com

Messaoud Guesba

Department of Mathematics, Operators Theory and PDE Foundations and Applications Laboratory, University of El-Oued, P. O. Box 789, El-Oued 39000, Algeria

E-mail address: guesbamessaoud2@gmail.com

Received: January 25, 2024; Accepted: June 24, 2024