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ON THE CLASS OF n-QUASI-m-SYMMETRIC OPERATORS

SOUHAIB DJABALLAH AND MESSAOUD GUESBA

Abstract. The aim of this paper is to extend some properties of m-
symmetric operators to the class of n−quasi−m−symmetry. It is shown
that if T is an n1−quasi−m−symmetry and S is an n2−quasi-l-symmetry
such that T and S are double commuting, then TS is an n−quasi−(m+
l − 1)−symmetry where n = max{n1, n2}. Also we study some spectral
properties and C0−semigroup of this class.

1. Introduction

Let H be a complex Hilbert space, and B(H) denote to the algebra of all
bounded linear operators on H. For every T ∈ B(H), we denote T ∗, N(T ) and
R(T ) the adjoint, the null space and the range of T , respectively. As usual M
denotes the closure of M ⊂ H, while σ(T ), σp(T ) and σap(T ) stand for the spec-
trum, the point spectrum and the approximate point spectrum of T , respectively.

An operator T ∈ B(H) is said to be m-isometry for some positive integer m if

m∑
k=0

(−1)m−k

(
m
k

)
T ∗kT k = 0,

where

(
m
k

)
is the binomial coefficient. This class has been generalized to the

class of n-quasi-m-isometry i.e., T is an n-quasi-m-isometry if

T ∗n

(
m∑
k=0

(−1)m−k

(
m
k

)
T ∗kT k

)
Tn = 0,

for some positive integers m and n. This class has been studied in [2, 4, 8, 10, 13].
Let m be a positive integer. T ∈ B(H) is said to be m-symmetry if it satisfies

αm(T ) =

m∑
k=0

(−1)m−k

(
m
k

)
T ∗(m−k)T k = 0.

For m = 1, we obtain that T is selfadjoint. Moreover, if T is selfadjoint, then
T is m-symmetric for every positive integer m; hence the class of m-symmetry
is a generalization of selfadjoint operators. This class has been studied by many
authors see [1, 3, 6, 7, 11, 12, 14].
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In [16] the authors generalize the class of m−symmetry to the class of n-
quasi-m-symmetry where m and n are positive integers, i.e., T is an n-quasi-m-
symmetry if

T ∗n

(
m∑
k=0

(−1)m−k

(
m
k

)
T ∗(m−k)T k

)
Tn = 0.

Recall that T is an n-quasi strict m-symmetry if T is an n-quasi-m-symmetry,
and T is not an n-quasi-(m−1)-symmetry. It is shown that if T is an n-quasi-m-
symmetry and R (Tn) is dense, then T is an m-symmetric operator [16]. It has
been proved in [16] that T is an n-quasi-m-symmetric operator if and only if

T =

(
T1 T2

0 T3

)
on H = R (Tn)⊕N (T ∗n), where T1 is an m-symmetric operator and Tn

3 = 0.
A well-known property of n-quasi-m-symmetries is the power of any n-quasi-
m-symmetry is also an n-quasi-m-symmetry. Moreover, if T is an n-quasi-m-
symmetry, then T is an k-quasi−l−symmetry for k ≥ n and l ≥ m.

Our purpose in this paper is to extend the properties of m-symmetry to the
class of n-quasi-m-symmetry and we discuss which properties remain valid and
which properties are not valid for the class of n-quasi-m-symmetry. The paper
is organized as follows. Section 2 begins with some lemmas that are needed
throughout this work. Then we study some properties of m-symmetric operators.
Next we devote our interest to the study of properties of n-quasi-m-symmetries.
Section 3 is dedicated to discuss C0−semigroup of n-quasi-m-symmetry. More
precisely, we prove that if {T (t)}t≥0 ⊂ B(H) is a C0−semigroup on H, then T (t)
is an n-quasi-m-symmetry for all t ≥ 0 if and only if T (t) is an m-symmetry for
all t ≥ 0.

2. Properties of n-quasi-m-symmetry

First, we present some lemmas which are needed throughout this work.
Let T, S ∈ B(H). T and S are said to be double commuting if T commutes with
S and S∗.

Lemma 2.1. [5] Let T, S,Q ∈ B(H). Then

(i) If T and Q commutes, then

αm(T +Q) =
m∑
k=0

m−k∑
j=0

(−1)k
(

m
k

)(
m− k

j

)
Q∗jαm−k−j(T )Q

k.

(ii) If T and S are double commuting, then

αm(TS) =

m∑
k=0

(
m
k

)
T ∗kαk(S)αm−k(T )S

m−k.

Lemma 2.2. [5] Let T, S ∈ B(H). Assume that T and S are double commuting.
If T is m−symmetric and S is ℓ-symmetric, then operator TS is (m + ℓ − 1)-
symmetric.
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Lemma 2.3. [9] Let T ∈ B(H) be an 2m−symmetry. Then T is an (2m −
1)−symmetry.

Proposition 2.1. Let T ∈ B(H) be invertible. If T r and T r+1 are selfadjoint for
some r ∈ N, then T is selfadjoint.

Proof. Since T is invertible with T r and T r+1 are selfadjoint, then

T r+1 = (T r+1)∗ = (T r)∗T ∗ = T rT ∗

=⇒ T r+1 = T rT ∗

=⇒ T ∗ = T.

Therefore, T is selfadjoint. □

The following example shows that Proposition 2.1 is not necessarily true if T
is not invertible.

Example 2.1. Let H = C3, and T =

0 0 0
1 0 0
0 0 0

, it is clear that T is not

selfadjoint even though T 2 and T 3 are selfadjoint, since T 2 = T 3 = 0.

Theorem 2.1. Let T ∈ B(H) be an invertible operator. If T r is an m−symmetry
and T s is an l−symmetry with T ∗rT s = T sT ∗r for some positive integers r and
s, then T h is an (m+ l − 1)−symmetry where h = max{r, s} −min{r, s}.

Proof. Assume that r ≤ s, since T rT s = T sT r = T r+s, then T−rT s = T sT−r.
Similarly, since T ∗rT s = T sT ∗r, we deduce that (T ∗)−rT s = T s(T ∗)−r.
That means T−r and T s are double commuting, and since T r is an m−symmetry,
thus so is T−r. Applying Lemma 2.2 on T s and T−r, we get T h = T sT−r is an
(m+ l − 1)−symmetry where h = s− r. □

Corollary 2.1. Let T ∈ B(H) be an invertible operator. Then we have

(1) If T r is an m−symmetry and T r+1 is an l−symmetry for some r ∈ N,
such that T ∗rT r+1 = T r+1T ∗r, then T is an (m+ l − 1)−symmetry.

(2) If T r is selfadjoint and T r+1 is an m−symmetry, then T is an m−symmetry.

Theorem 2.2. Let T, S ∈ B(H). If T is an n1−quasi−m−symmetry and S is
an n2−quasi-l-symmetry such that T and S are double commuting, then TS is
an n−quasi−(m+ l−1)−symmetry, where n = max{n1, n2}. Moreover, TS is an

n−quasi strict (m+l−1)−symmetry if and only if T ∗(n+l−1)αm−1(T )T
nS∗nαl−1(S)

Sn+l−1 is not the zero operator.

Proof. Since TS = ST and T ∗S = ST ∗, and by Lemma 2.1, we obtain

(T ∗S∗)nαm+l−1(TS)(TS)
n

= T ∗nS∗n
m+l−1∑
k=0

(
m+ l − 1
k

)
T ∗kαk(S)αm+l−1−k(T )S

m+l−1−kTnSn.

For k ≤ l − 1, then m+ l − 1− k ≥ m, thus for all k ≤ l − 1, we have

T ∗nαm+l−1−k(T )T
n = 0.
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For k ≥ l, then S∗nαk(S)S
n = 0 for all k ≥ 0, hence

(T ∗S∗)nαm+l−1(TS)(TS)
n = 0.

Similarly, we get

(T ∗S∗)nαm+l−2(TS)(TS)
n = T ∗(n+l−1)αm−1(T )T

nS∗nαl−1(S)S
n+l−1.

Therefore, TS is an n−quasi strict (m+ l−1)−symmetry if and only if T ∗(n+l−1)

αm−1(T )T
nS∗nαl−1(S)S

n+l−1 is not the zero operator. □

The following example shows that Theorem 2.2 is not necessarily true if T and
S are not double commuting.

Example 2.2. Let H = C3, and T =

0 0 0
1 0 0
0 2 0

 and S =

1 1 1
1 1 1
1 1 1

, by a

simple calculation we obtain that T is an 1−quasi−3−symmetry, and S is clearly
selfadjoint. We have that T and S are not commuting, then by straightforward
calculation we get that TS is not a 1−quasi−3−symmetry.

Theorem 2.3. Let T,Q ∈ B(H). If T is an n−quasi−m−symmetry and Q is
a nilpotent operator of order p such that TQ = QT , then T + Q is an (n + p −
1)−quasi−(m+2p− 2)−symmetry. Furthermore, T +Q is an (n+ p− 1)−quasi

strict −(m + 2p − 2)−symmetry if and only if (T ∗ + Q∗)n+p−1Q∗(p−1)αm−1(T )
Qp−1(T +Q)n+p−1 is not the zero operator.

Proof. Set r = n + p − 1, l = m + 2p − 2 and R = T + Q, since TQ = QT and
applying Lemma 2.1, we obtain

R∗rαl(R)Rr

=(T ∗ +Q∗)r
l∑

k=0

l−k∑
j=0

(−1)k
(

l
k

)(
l − k
j

)
Q∗jαl−k−j(T )Q

k(T +Q)r

=
r∑

i=0

aiT
∗r−iQ∗i

l∑
k=0

l−k∑
j=0

(−1)kbkck,jQ
∗jαl−k−j(T )Q

k
r∑

i=0

aiT
r−iQi,

where ai =

(
r
i

)
, bk =

(
l
k

)
and ck,j =

(
l − k
j

)
.

Note that if k ≥ p or j ≥ p, then Qk = 0 or Q∗j = 0, thus

Q∗jαl−k−j(T )Q
k = 0.

If k ≤ p− 1 and j ≤ p− 1, we obtain

l − k − j = m+ 2p− 2− k − j ≥ m+ 2p− 2− (p− 1)− (p− 1) = m.

Since T is an n−quasi−m−symmetry and Q is a nilpotent operator of order p,
we get

T ∗n+p−1−iαl−k−j(T )T
n+p−1−i = 0 for i ≤ p− 1.

For p ≤ i ≤ n+ p− 1, we obtain

T ∗n+p−1−iQ∗iαl−k−j(T )T
n+p−1−iQi = 0.
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Then, R∗rαl(R)Rr = 0 as desired.
Similarly, we obtain

R∗rαm+2p−3(R)Rr

= (−1)m+p−2

(
m+ 2p− 3
p− 1

)(
m+ p− 2
p− 1

)
R∗rQ∗(p−1)αm−1(T )Q

p−1Rr.

Hence T +Q is an (n+ p− 1)−quasi strict (m+2p− 2)−symmetry if and only if

(T ∗ +Q∗)n+p−1Q∗(p−1)αm−1(T )Q
p−1(T +Q)n+p−1 is not the zero operator. □

Let H ⊗H denote the completion, endowed with a reasonable uniform cross-
norm of the algebraic tensor product H ⊗ H of H and H. For T, S ∈ B(H),
T ⊗ S ∈ B(H⊗H) denotes to the tensor product operator defined by T and S.

Lemma 2.4. Let T ∈ B(H). Then T is an n−quasi−m−symmetry if and only
if T ⊗ I and I ⊗ T are n−quasi−m−symmetry.

Proof. We have

αm(T ⊗ I) = αm(T )⊗ I.

Then,

(T ⊗ I)∗nαm(T ⊗ I)(T ⊗ I)n = (T ∗n⊗ I)(αm(T )⊗ I)(Tn⊗ I) = T ∗nαm(T )Tn⊗ I.

Hence T is an n−quasi−m−symmetry if and only if T ⊗ I, and the same with
I ⊗ T . □

Proposition 2.2. Let T, S ∈ B(H). If T is an n1−quasi−m−symmetry and S
is an n2−quasi−l−symmetry, then T ⊗ S is an n−quasi−(m+ l− 1)−symmetry
where n = max{n1, n2}.

Proof. Since T is an n1−quasi−m−symmetry, and S is an n2−quasi-l-symmet-ry,
by Lemma 2.4 we obtain that T ⊗ I is an n1−quasi−m−symmetry, and I ⊗ S is
an n2−quasi−l−symmetry. We observe that

T ⊗ S = (T ⊗ I)(I ⊗ S) = (I ⊗ S)(T ⊗ I).

Similarly, we obtain

T ⊗ S∗ = (T ⊗ I)(I ⊗ S∗) = (T ⊗ I)(I ⊗ S)∗ = (I ⊗ S)∗(T ⊗ I).

Hence T ⊗ I and I⊗S are double commuting, by applying Theorem 2.2 on T ⊗ I
and I ⊗ S, we obtain that T ⊗ S is an n−quasi−(m + l − 1)−symmetry, where
n = max{n1, n2}. □

Proposition 2.3. Let T,Q ∈ B(H). If T is an n−quasi−m−symmetry and Q
is a nilpotent of order p, then T ⊗ I + I ⊗Q is an (n+ p− 1)−quasi−(m+ 2p−
2)−symmetry.

Proof. Since T is an n−quasi−m−symmetry, then so is T ⊗ I, as Q is a nilpotent
of order p, thus I ⊗Q is a nilpotent of order p as well, we have

T ⊗Q = (T ⊗ I)(I ⊗Q) = (I ⊗Q)(T ⊗ I).

Applying Theorem 2.3 on T ⊗ I and I ⊗Q, we obtain that T ⊗ I + I ⊗Q is is an
(n+ p− 1)−quasi−(m+ 2p− 2)−symmetry. □
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The following example shows that if T is an n1−quasi−m−symmetry and S is
an n2−quasi−l−symmetry with T and S are double commuting, then T + S is
not necessarily n−quasi−(m+ l − 1)−symmetry.

Example 2.3. Let H = C3, T =

0 0 0
1 0 0
0 2 0

 and S = I, T is an 1−quasi-3-

symmetry and S is selfadjoint with T and S are double commuting. By a simple
calculation we obtain that T + I is not n−quasi-3-symmetry for any n ∈ N.

Theorem 2.4. Let T, S ∈ B(H). If T is an n1−quasi−m−symmetry and S is
an n2−quasi−l−symmetry such that TS = ST = T ∗S = ST ∗ = 0, then T + S is
an n−quasi−q−symmetry, where n = max{n1, n2} and q = max{m, l}.

Proof. Since TS = ST = 0, then for any strictly positive integer r, we have

(T + S)r =

r∑
i=0

(
r
i

)
T r−iSi = T r + Sr,

(T ∗ + S∗)r =
r∑

i=0

(
r
i

)
T ∗(r−i)S∗i = T ∗r + S∗r.

Therefore,

αq(T + S)

=

q∑
k=0

(−1)q−k

(
q
k

)
(T ∗(q−k) + S∗(q−k))(T k + Sk)

=(−1)qT ∗q + (−1)qS∗q +

q−1∑
k=1

(−1)q−k

(
q
k

)
(T ∗(q−k) + S∗(q−k))(T k + Sk)

+T q + Sq.

Since T ∗S = ST ∗ = 0, we obtain

αq(T + S) =(−1)qT ∗q + (−1)qS∗q +

q−1∑
k=1

(−1)q−k

(
q
k

)
(T ∗(q−k)T k + S∗(q−k)Sk)

+T q + Sq

=αq(T ) + αq(S).

We observe that

(T + S)∗nαq(T + S)(T + S)n = (T ∗n + S∗n)(αq(T ) + αq(S))(T
n + Sn).

We have TS = ST = T ∗S = ST ∗ = 0, then

(T + S)∗nαq(T + S)(T + S)n = T ∗nαq(T )T
n + S∗nαq(S)S

n.

Since n = max{n1, n2} and q = max{m, l}, using the assumption that T is an
n1−quasi−m−symmetry and S be an n2−quasi−l−symmetry, we get

T ∗nαq(T )T
n = S∗nαq(S)S

n = 0.

Hence (T + S)∗nαq(T + S)(T + S)n = 0 as required. □
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Proposition 2.4. Let T ∈ B(H) be an n−quasi−2m−symmetry. Then T is an
n−quasi−(2m− 1)−symmetry.

Proof. • If R (Tn) is dense, then T is an 2m−symmetry, by Lemma 2.3, we get
that T is an (2m− 1)−symmetry.

• If R (Tn) is not dense, then T =

(
T1 T2

0 T3

)
on H = R (Tn)⊕N (T ∗n), where

T1 is an 2m-symmetric operator and Tn
3 = 0.

By Lemma 2.3, we obtain that T1 is an (2m− 1)−symmetry. Hence we get that
T is an n−quasi−(2m− 1)−symmetry. □

Theorem 2.5. Let T ∈ B(H) be an n−quasi−m−symmetry. The following
statements hold:

(1) σ(T ) ⊂ R.
(2) If λ ∈ σp(T ) \ {0} i.e., there exists x ∈ H such that Tx = λx, if x /∈

N(T ∗n), then λ ∈ σp(T
∗).

(3) If λ ∈ σap(T ) \ {0} i.e., there exists a sequence (xj) ⊂ H of unit vectors
such that lim

j→∞
(T − λ)xj = 0 , if lim

j→∞
T ∗nxj ̸= 0, then λ ∈ σap(T

∗).

Proof. (1) Let λ ∈ C \ R. If λ is an approximate point spectrum of T , then
there exists a sequence of unit vectors (xj) ⊂ H such that

lim
j→∞

(T − λ)xj = 0.

Then we can easily prove that for any strictly positive integer r

lim
j→∞

(T r − λr)xj = 0.

Now, we prove that for any strictly positive integers r and s

lim
j→∞

⟨T rxj , T
sxj⟩ = λrλ

s
.

Observe that

|⟨T rxj , T
sxj⟩ − λrλ

s| =|⟨T rxj , T
sxj⟩ − ⟨λrxj , λ

sxj⟩|
=|⟨T rxj , T

sxj⟩ − ⟨λrxj , T
sxj⟩+ ⟨λrxj , T

sxj⟩
− ⟨λrxj , λ

sxj⟩|
=|⟨(T r − λr)xj , T

sxj⟩+ ⟨λrxj , (T
s − λs)xj⟩|

≤|⟨(T r − λr)xj , T
sxj⟩|+ |⟨λrxj , (T

s − λs)xj⟩|
≤∥(T r − λr)xj∥∥T sxj∥+ ∥λrxj∥∥(T s − λs)xj∥
≤∥T s∥∥(T r − λr)xj∥+ |λ|r∥(T s − λs)xj∥.

We have

lim
j→∞

(T r − λr)xj = lim
j→∞

(T s − λs)xj = 0,

we deduce that

lim
j→∞

|⟨T rxj , T
sxj⟩ − λrλ

s| = 0.
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Since T is an n−quasi−m−symmetry, we obtain

0 =
m∑
k=0

(−1)m−k

(
m
k

)
⟨T ∗(n+m−k)T k+nxj , xj⟩

=
m∑
k=0

(−1)m−k

(
m
k

)
⟨T k+nxj , T

n+m−kxj⟩.

Since

lim
j→∞

⟨T rxj , T
sxj⟩ = λrλ

s
,

we obtain

0 =

m∑
k=0

(−1)m−k

(
m
k

)
λn+kλ

n+m−k

=|λ|2n
m∑
k=0

(−1)m−k

(
m
k

)
λkλ

m−k

=|λ|2n(λ− λ)m.

Thus,

2m|λ|2nIm(λ)m = 0.

We have λ ∈ C \ R, then λ ̸= 0, this implies that Im(λ) = 0.
This contradicts the hypothesis of λ ∈ C \ R. Hence λ /∈ σap(T ), then
σap(T ) ⊂ R. It follows that ∂σ(T ) ⊂ σap(T ) ⊂ R. Therefore, σ(T ) ⊂ R.

(2) Let λ ∈ σp(T ) \ {0} i.e. there exists x ∈ H such that Tx = λx, and
assume that x /∈ N(T ∗n). Since T is an n−quasi−m−symmetry, we get

0 =

m∑
k=0

(−1)m−k

(
m
k

)
T ∗(n+m−k)T k+nx

=

m∑
k=0

(−1)m−k

(
m
k

)
T ∗(n+m−k)λk+nx

=λnT ∗n
m∑
k=0

(−1)m−k

(
m
k

)
λkT ∗(m−k)x

=(−1)mλnT ∗n(T ∗ − λ)mx.

Since λ ̸= 0, we obtain

T ∗n(T ∗ − λ)mx = 0.

Let S ∈ B(H) such that N(S) = {0}. Then N(Sr) = {0} for any positive
integer r. By induction, for r = 1, we have N(S) = {0}.
Assume that N(Sr) = {0}, we prove that N(Sr+1) = {0}.
Suppose that there exists a nonzero x ∈ N(Sr+1). UsingN(S) = N(Sr) =
{0}, we get

Sr+1x = 0 =⇒ S(Srx) = 0 =⇒ Srx = 0 =⇒ x = 0.
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Therefore, N(Sr+1) = {0} as desired.
If λ /∈ σp(T

∗), then N(T ∗ − λ) = {0}, thus N((T ∗ − λ)m) = {0}.
Observe that

T ∗n(T ∗ − λ)mx = (T ∗ − λ)mT ∗nx = 0 =⇒ T ∗nx = 0.

This contradicts the assumption of x /∈ N(T ∗n). Hence λ ∈ σp(T
∗).

(3) Let λ ∈ σap(T ) \ {0} i.e., there exists a sequence (xj) ⊂ H of unit vectors
such that lim

j→∞
(T − λ)xj = 0. Assume that lim

j→∞
T ∗nxj ̸= 0.

Since T is an n−quasi−m−symmetry,

∥
m∑
k=0

(−1)m−k

(
m
k

)
T ∗(n+m−k)Tn+kxj∥ = 0.

Hence

∥λnT ∗n
m∑
k=0

(−1)m−k

(
m
k

)
λkT ∗(m−k)xj∥

=∥λnT ∗n
m∑
k=0

(−1)m−k

(
m
k

)
λkT ∗(m−k)xj∥

−∥
m∑
k=0

(−1)m−k

(
m
k

)
T ∗(n+m−k)Tn+kxj∥

≤∥T ∗n
m∑
k=0

(−1)m−k

(
m
k

)
T ∗(m−k)(T k+n − λk+n)xj∥

≤
m∑
k=0

(
m
k

)
∥T ∗(n+m−k)∥∥(T k+n − λk+n)xj∥.

Note that for every 0 ≤ k ≤ m,

lim
j→∞

∥(T k+n − λk+n)xj∥ = 0.

Therefore,

lim
j→∞

∥λnT ∗n
m∑
k=0

(−1)m−k

(
m
k

)
λkT ∗(m−k)xj∥ = 0.

We have

λnT ∗n
m∑
k=0

(−1)m−k

(
m
k

)
λkT ∗(m−k)xj = (−1)mλnT ∗n(T ∗ − λ)mxj .

Since λ ̸= 0, we get

lim
j→∞

∥T ∗n(T ∗ − λ)mxj∥ = 0.

If λ /∈ σap(T
∗), then T ∗ − λ is bounded from below

∃ c > 0, ∀x ∈ H : ∥(T ∗ − λ)x∥ ≥ c∥x∥.
We observe that for all x ∈ H

∥(T ∗ − λ)mx∥ ≥ cm∥x∥.
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Thus,

∥T ∗n(T ∗ − λ)mxj∥ = ∥(T ∗ − λ)mT ∗nxj∥ ≥ cm∥T ∗nxj∥.

Since limj→∞ ∥T ∗n(T ∗ − λ)mxj∥ = 0, we deduce that

lim
j→∞

∥T ∗nxj∥ = 0.

This contradicts the assumption of lim
j→∞

∥T ∗nxj∥ ≠ 0.

Hence λ ∈ σap(T
∗).

□

Proposition 2.5. Let T ∈ B(H) be a hyponormal operator ( i.e., T ∗T ≥ TT ∗ ).
If T is an n−quasi−m−symmetry, then T is selfadjoint.

Proof. By Theorem 2.5, we have σ(T ) ⊂ R. From [15, Corollary 3], it follows
that T is selfadjoint. □

Corollary 2.2. Let T ∈ B(H). If T is a strict n−quasi−m−symmetry, then T
is not hyponormal.

Proposition 2.6. Let T ∈ B(H) be an n−quasi−m−symmetry. If there exists a

strictly positive integer r ≤ n − 1 such that N(T ∗r) = N(T ∗(r+1)), then T is an
r−quasi−m−symmetry.

Proof. Since N(T ∗r) = N(T ∗(r+1)), we can prove that N(T ∗r) = N(T ∗n).
We have T is an n−quasi−m−symmetry, thus

T ∗n
m∑
k=0

(−1)m−k

(
m
k

)
T ∗(m−k)T kTn = 0

=⇒T ∗r
m∑
k=0

(−1)m−k

(
m
k

)
T ∗(m−k)T kTn = 0

=⇒(T ∗r
m∑
k=0

(−1)m−k

(
m
k

)
T ∗(m−k)T kTn)∗ = 0

=⇒T ∗n
m∑
k=0

(−1)m−k

(
m
k

)
T ∗kTm−kT r = 0

=⇒T ∗r
m∑
k=0

(−1)m−k

(
m
k

)
T ∗kTm−kT r = 0.

Hence T is an r−quasi−m−symmetry. □

3. C0−semigroup of n−quasi−m−symmetry

Let {T (t)}t≥0 ⊂ B(H). {T (t)}t≥0 is said to be C0−semigroup if it satisfies the
following:
(1) T (0) = I,
(2) T (t+ s) = T (t)T (s), for all t, s ≥ 0,
(3) limt→0+ T (t)x = x, for all x ∈ H in the strong operator topology.
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Lemma 3.1. Let {T (t)}t≥0 ⊂ B(H) be a C0−semigroup on H. The following
statements are equivalent:
(i) T (t) is an n−quasi−m−symmetry for all t ≥ 0.

(ii) T (t) is an n−quasi−m−symmetry for all t ∈]0, t′ ] with t
′
> 0.

Proof. (i) =⇒ (ii) is obvious.

(ii) =⇒ (i) For any t ≥ t
′
, there exists r = [

t

t′
] + 1 and s ∈]0, t′ ] such that

t = rs, where [
t

t′
] denotes the greatest integer ≤ t

t′
. Since s ∈]0, t′ ], T (s) is an

n−quasi−m−symmetry, thus T r(s) is an n−quasi−m−symmetry as well. Ob-
serve that T r(s) = T (rs) = T (t). Hence T (t) is an n−quasi−m−symmetry. □

Theorem 3.1. Let {T (t)}t≥0 ⊂ B(H) be a C0−semigroup on H. Then T (t) is
an n-quasi-m-symmetry for all t ≥ 0 if and only if T (t) is an m−symmetry for
all t ≥ 0.

Proof. • If T (t) is an m−symmetry for all t ≥ 0, then T (t) is clearly an n-quasi-
m-symmetry for all t ≥ 0.
• Suppose that T (t) is an n−quasi−m−symmetry for all t ≥ 0, then by Lemma

3.1 for all t
′
> 0, we have T (t) is an n−quasi−m−symmetry for all t ∈]0, t′ ].

Observe that for all x ∈ H
m∑
k=0

(−1)m−k

(
m
k

)
⟨T ∗(n−k)(t)T k(t)Tn(t)x, Tn(t)x⟩ = 0.

Hence for all x ∈ R (Tn(t)), we have

m∑
k=0

(−1)m−k

(
m
k

)
⟨T ∗(n−k)(t)T k(t)x, x⟩ = 0.

Therefore, for all x ∈
⋂

t∈]0,t′ ]
R (Tn(t)), we have

m∑
k=0

(−1)m−k

(
m
k

)
⟨T ∗(n−k)(t)T k(t)x, x⟩ = 0.

However, we can easily prove that
⋂

t∈]0,t′ ]
R (Tn(t)) = R (Tn(t′)). Then for all

t ∈]0, t′ ] and for all x ∈ R (Tn(t′)), we have

m∑
k=0

(−1)m−k

(
m
k

)
⟨T ∗(n−k)(t)T k(t)x, x⟩ = 0.

That means for all t ∈]0, t′ ], T (t) is anm−symmetry on R (Tn(t′)). Using Lemma

3.1 again, we obtain that T (t) is an m−symmetry on R (Tn(t′)) for all t > 0 i.e.

m∑
k=0

(−1)m−k

(
m
k

)
⟨T ∗(n−k)(t)T k(t)x, x⟩ = 0, ∀x ∈ R (Tn(t′)) , ∀t > 0.
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We observe for all t > 0 and x ∈ H
m∑
k=0

(−1)m−k

(
m
k

)
⟨T ∗(n−k)(t)T k(t)Tn(t

′
)x, Tn(t

′
)x⟩ = 0.

Now, for all x ∈ H we have
|⟨T ∗(n−k)(t)T k(t)Tn(t

′
)x, Tn(t

′
)x⟩ − ⟨T ∗(n−k)(t)T k(t)x, x⟩|

=|⟨T ∗(n−k)(t)T k(t)Tn(t
′
)x, Tn(t

′
)x⟩ − ⟨T ∗(n−k)(t)T k(t)x, Tn(t

′
)x⟩

+⟨T ∗(n−k)(t)T k(t)x, Tn(t
′
)x⟩ − ⟨T ∗(n−k)(t)T k(t)x, x⟩|

=|⟨T ∗(n−k)(t)T k(t)Tn(t
′
)x− T ∗(n−k)(t)T k(t)x, Tn(t

′
)x⟩

+⟨T ∗(n−k)(t)T k(t)x, Tn(t
′
)x− x⟩|

≤∥T ∗(n−k)(t)T k(t)Tn(t
′
)x− T ∗(n−k)(t)T k(t)x∥∥Tn(t

′
)x∥

+∥T ∗(n−k)(t)T k(t)x∥∥Tn(t
′
)x− x∥

≤(∥T ∗(n−k)(t)T k∥∥Tn(t
′
)x∥+ ∥T ∗(n−k)(t)T k(t)x∥)∥Tn(t

′
)x− x∥.

Since lim
s→0+

T (s)x = x, we have

lim
t′→0+

∥Tn(t
′
)x− x∥ = lim

t′→0+
∥T (nt′)x− x∥ = 0.

Therefore,

lim
t′→0+

|⟨T ∗(n−k)(t)T k(t)Tn(t
′
)x, Tn(t

′
)x⟩ − ⟨T ∗(n−k)(t)T k(t)x, x⟩| = 0.

Thus, for all t > 0 and x ∈ H

lim
t′→0+

m∑
k=0

(−1)m−k

(
m
k

)
⟨T ∗(n−k)(t)T k(t)Tn(t

′
)x, Tn(t

′
)x⟩ = 0,

=⇒
m∑
k=0

(−1)m−k

(
m
k

)
⟨T ∗(n−k)(t)T k(t)x, x⟩ = 0,

=⇒
m∑
k=0

(−1)m−k

(
m
k

)
T ∗(n−k)(t)T k(t)x = 0.

Hence T (t) is an m−symmetry for all t ≥ 0. □
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[3] M. Chō, J.E. Lee, K. Tanahashi and J. Tomiyama, On [m, C]-symmetric operators,
Kyungpook Math. J. 58 (2018), 637–650.

[4] K. Gherairi, Z. Hajjej, H. Li and H. Regeiba, n-quasi-A-(m, q)-isometry on a Banach
space, AIMS Math., 8(12) (2023), 28308-28321.



212 SOUHAIB DJABALLAH AND MESSAOUD GUESBA

[5] C. Gu, M. Stankus. Some results on higher order isometries and symmetries: Prod-
ucts and sums a nilpotent operator. Linear Algebra Appl. 469 (2015), 500-509.

[6] M. Guesba, Symmetric properties of elementary operators. Novi Sad J. Math. 52(1)
(2022), 191-197.

[7] N. Jeridi, R. Rabaoui, On (A, m)-symmetric operators in a Hilbert space, Results
in Math., 74 (2019), 1-33.

[8] O. A. Mahmoud Sid Ahmed , A. Saddi and K. Gherairi, Some results on higher
orders quasi-isometries. Hacet. J. Math. Stat. 49 (2020), 1315–1333.

[9] S. McCullough, L. Rodman, Hereditary classes of operators and matrices, Amer.
Math. Monthly, 104 (1997), 415–430.

[10] S. Mecheri, T. Prasad, On n-quasi-m-isometric operators. Asian-Eur. J. Math. 9(4)
(2016), 1650073 (8 pages).

[11] M. Salehi, K. Hedayatian, On higher order selfadjoint operators. Linear Algebra
Appl., 587 (2020), 358-386.

[12] J. Shen, F. Zuo and A. Chen, Some results on higher order symmetric operators.
Filomat, 37(12) (2023), 3769-3775.

[13] J. Shen, F. Zuo, Spectral properties of k-quasi-2-isomertic operators, J. Korean Soc.
Math. Ed., 22 (2015), 275–283.

[14] M. Stankus, m-Isometries, n-symmetries and other linear transformations which are
hereditary roots. Integral Equ. Oper. Theory, 75 (2013), 301-321.

[15] T. Yoshino, On the spectrum of a hyponormal operator. Tohoku Math. J., 17 (1965),
305-309.

[16] F. Zuo, S. Mecheri, A class of operators related to m-symmetric operators. Turk. J.
Math., 45 (2021), 1300–1309.

Souhaib Djaballah
Department of Mathematics, Operators Theory and PDE Foundations and Ap-

plications Laboratory, University of El-Oued, P. O. Box 789, El-Oued 39000,
Algeria

E-mail address: souhaibdjaballah@gmail.com

Messaoud Guesba
Department of Mathematics, Operators Theory and PDE Foundations and Ap-

plications Laboratory, University of El-Oued, P. O. Box 789, El-Oued 39000,
Algeria

E-mail address: guesbamessaoud2@gmail.com

Received: January 25, 2024; Accepted: June 24, 2024


