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BOUNDEDNESS OF DISCRETE HILBERT TRANSFORM ON

ORLICZ SEQUENCE SPACES

RASHID A. ALIEV AND AYNUR F. HUSEYNLI

Abstract. The Hilbert transform has been well studied on classical
function spaces, such as Lebesgue, Morrey, Orlicz spaces. But its dis-
crete version, which also has numerous applications, has not been fully
studied in discrete analogues of these spaces. In this paper we study the
discrete Hilbert transform on Orlicz sequence spaces. In particular, we
obtain its boundedness on the Orlicz sequence spaces.

1. Introduction

The Hilbert transform plays an important role in the theory and practice of
signal processing operations in continuous system theory because of its relevance
to problems such as envelope detection and demodulation, as well as its use
in relating the real and imaginary components, and the magnitude and phase
components of spectra. The Hilbert transform was the motivation for the de-
velopment of modern harmonic analysis. Its discrete version is also widely used
in many areas of science and technology and plays an important role in digital
signal processing. The essential motivation behind studying discrete transforms
is that experimental data are most frequently not taken in a continuous manner
but sampled at discrete time values. Since much of the data collected in both
physical sciences and engineering are discrete, the discrete Hilbert transform is a
rather useful tool in these areas for the general analysis of this type of data.

Denote by lp, p ≥ 1, the class of sequences of complex numbers b = {bn}n∈Z
satisfying the condition

∥b∥lp =

(∑
n∈Z

|bn|p
)1/p

< ∞,

where Z is the set of integers.
Let b = {bn}n∈Z ∈ lp, p ≥ 1. The sequence b̃ = {b̃n}n∈Z is called discrete

Hilbert transform of the sequence b = {bn}n∈Z, where

b̃n =
∑
m̸=n

bm
n−m

, n ∈ Z.
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M. Riesz proved (see [30]) that if b ∈ lp, p > 1, then b̃ ∈ lp and the inequality

∥b̃∥lp ≤ cp∥b∥lp (1.1)

holds, where cp is a constant, depending only p. Weighted analogues of (1.1) are
investigated in the works [5, 7, 8, 13, 17, 26, 28, 32].

If b ∈ l1 then the sequence b̃ belongs to the class
⋂

p>1 lp, but generally it does

not belong to the class l1 (see [3]). In this case, R.Hunt, B.Muckenhoupt and

R.Wheeden (see [17]) proved that the distribution function b̃(λ) :=
∑

{n∈Z:|b̃n|>λ} 1

of b̃ satisfies the weak condition

∀λ > 0 |b̃(λ)| ≤ c0
λ
∥b∥l1 ,

where c0 is an absolute constant. In [3], it was proved that, if the sequence
b ∈ l1 satisfies the conditions

∑
n∈Z bn = 0 (this condition is necessary for the

summability of the discrete Hilbert transform) and
∑

n∈Z |bn| ln(e + |n|) < ∞,

then b̃ ∈ l1 and the following inequality holds:

∥b̃∥l1 ≤ 6
∑
n∈Z

|bn| ln(e + |n|).

In [2] there was introduced the concept of Q-summability of series and using
this notion it was proved that the Hilbert transform of a sequence b ∈ l1 is Q-
summable and its Q-sum is equal to zero. In [1, 4, 15, 16, 18] discrete analogues
of harmonic analysis operators on discrete Morrey spaces were studied.

In this paper we study the discrete Hilbert transform on Orlicz sequence spaces.
In particular, we obtain its boundedness on the Orlicz sequence spaces using the
boundedness of the Hilbert transform on Orlicz spaces.

2. Orlicz sequence spaces

Definition 2.1. A function Φ : [0,+∞) → [0,+∞] is called a Young function, if
Φ is convex, left-continuous, limr→+0 Φ(r) = Φ(0) = 0, and limr→+∞ Φ(r) = +∞.

It follows from the definition that any Young function is increasing and satisfies
the properties

Φ

(∑
k∈Z

αktk

)
≤
∑
k∈Z

αkΦ(tk) for
∑
k∈Z

αk = 1, αk ≥ 0, tk ≥ 0, k ∈ Z. (2.1)

Denote by Y the set of all Young functions Φ such that

0 < Φ(r) < +∞ for 0 < r < +∞.

Every function Φ ∈ Y is absolutely continuous on every closed interval in [0,+∞),
and bijective from [0,+∞) to itself.

Definition 2.2. For a Young function Φ, the set

LΦ(R) =

{
f ∈ Lloc

1 (R) :

∫
R

Φ(k|f(x)|)dx < +∞ for some k > 0

}
is called Orlicz space.
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Note that if Φ(r) = rp, 1 ≤ p < ∞, then LΦ(R) = Lp(R); if Φ(r) = 0
(0 ≤ r ≤ 1) and Φ(r) = ∞ (r > 1), then LΦ(R) = L∞(R). We refer to [21, 22, 29]
for the theory of Orlicz spaces.

LΦ(R) is a Banach space with respect to the norm

∥f∥LΦ
= inf

{
λ > 0 :

∫
R

Φ

(
|f(x)|
λ

)
dx ≤ 1

}
.

It follows from the Fatou theorem that∫
R

Φ

(
|f(x)|
∥f∥LΦ

)
dx ≤ 1.

For a measurable function f , and t > 0, let

m(f, t) = |{x ∈ R : |f(x)| > t}|.

Definition 2.3. For a Young function Φ, the weak Orlicz space

WLΦ(R) =
{
f ∈ Lloc

1 (R) : ∥f∥WLΦ
< +∞

}
is defined by the norm

∥f∥WLΦ
= inf

{
λ > 0 : sup

t>0
Φ(t)m

(
f

λ
, t

)
≤ 1

}
.

A Young function Φ is said to satisfy the ∆2-condition, denoted by Φ ∈ ∆2, if

Φ(2r) ≤ kΦ(r) for r > 0

for some k > 1. If Φ ∈ ∆2, then Φ ∈ Y. A Young function Φ is said to satisfy
the ∇2-condition, denoted by Φ ∈ ∇2, if

Φ(r) ≤ 1

2k
Φ(kr) for r > 0

for some k > 1. If 1 < p < ∞, then Φ(r) = rp satisfies both conditions ∆2 and
∇2.

For a Young function Φ, the complementary function Φ̃(r) is defined by

Φ̃(r) = sup{rs− Φ(s) : s ∈ [0,∞)}, r ∈ [0,∞).

The complementary function Φ̃ is also a Young function and ˜̃Φ = Φ. If Φ(r) =

r, then Φ̃(r) = 0 for 0 ≤ r ≤ 1 and Φ̃(r) = +∞ for r > 1. If 1 < p < ∞,

1/p + 1/p′ = 1 and Φ(r) = rp/p, then Φ̃(r) = rp
′
/p′. Note that Φ ∈ ∇2 if and

only if Φ̃ ∈ ∆2. It is well known that

r ≤ Φ−1(r)Φ̃−1(r) ≤ 2r for r ≥ 0.

The following analogue of the Hölder inequality is well known.

Theorem 2.1. For a Young function Φ and its complementary function Φ̃, the
following inequality holds:

∥fg∥L1(R) ≤ 2∥f∥LΦ
∥g∥LΦ̃
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Definition 2.4. For a Young function Φ, the set of all sequences of scalars
b = {bn}n∈Z such that∑

n∈Z
Φ(k|bn|) < +∞ for some k > 0

is called Orlicz sequence space and denoted by lΦ.

The space lΦ with the norm

∥b∥lΦ = inf

{
λ > 0 :

∑
n∈Z

Φ

(
|bn|
λ

)
dx ≤ 1

}
.

becomes a Banach space.

Definition 2.5. For a Young function Φ, weak Orlicz sequence space

WlΦ = {b = {bn}n∈Z : ∥b∥WlΦ < +∞}
is defined by the norm

∥b∥WlΦ = inf

{
λ > 0 : sup

t>0
Φ(t)b(λt) ≤ 1

}
,

where b(λ) :=
∑

{n∈Z: |bn|>λ} 1 is the distribution function of the sequence b =

{bn}n∈Z.

The properties of Orlicz sequence spaces are investigated in the works [6, 10,
11, 12, 19, 20, 23, 24, 25, 27, 31].

3. Boundedness of the discrete Hilbert transform on Orlicz
sequence spaces

Necessary and sufficient conditions for the boundedness of singular integral
operators in Orlicz spaces were obtained in [9]. To formulate the results from
[9], we recall that, for functions Φ and Ψ from [0,∞) into [0,∞], the function
Ψ is said to dominate Φ globally if there exists a positive constant C such that
Φ(s) ≤ Ψ(Cs) for all s > 0.

Theorem 3.1. [9]. Let T be any singular integral operator having the form

(Tf)(x) = lim
ε→0+

∫
(|y|≥ε)

g(y)

|y|n
· f(x− y)dy, x ∈ Rn, (3.1)

where g is a non-identically zero odd function on Rn, homogeneous of degree 0,

satisfying the ”Dini-type” condition
∫
0
ω(δ)
δ dδ < ∞ 1

on the unit sphere Sn−1 of Rn, ω(δ) = sup{|g(x)− g(y)| : x, y ∈ Sn−1, |x−y| ≤
δ}. Let Φ and Ψ be Young functions. Then

(i) T is of weak type (Φ,Ψ) if and only if
∫
0 Φ̃(t)/t2dt < ∞ and Ψ̃(s) dominates

the Young function s
∫ s
0 Φ̃(t)/t2dt globally;

(ii) T is of strong type (Φ,Ψ) if and only if
∫
0 Ψ(t)/t2dt < ∞,

∫
0 Φ̃(t)/t2dt <

∞, Φ(s) dominates the Young function s
∫ s
0 Ψ(t)/t2dt globally and Ψ̃(s) domi-

nates the Young function s
∫ s
0 Φ̃(t)/t2dt globally.

1Here and below,
∫
0
f(t)dt < ∞ means the existence of η > 0 such that

∫ η

0
f(t)dt converges.
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Observe that the Hilbert transform

(Hf)(t) =
1

π
v.p.

∫
R

f(t)

x− t
dt :=

1

π
lim

ε→0+

∫
{τ∈R: |τ−t|>ε}

f(τ)

t− τ
dτ, t ∈ R

is of type (3.1).

Theorem 3.2. Let Φ and Ψ be Young functions.

(i) If
∫
0
Φ̃(t)
t2

dt < ∞ and Ψ̃(s) dominates the Young function s
∫ s
0

Φ̃(t)
t2

dt globally,
then the discrete Hilbert transform is bounded from lΦ to WlΨ, that is for any
b ∈ lΦ we have b̃ ∈ WlΨ, and there exists a positive constant C1 such that

∥b̃∥WlΨ ≤ C1 · ∥b∥lΦ
for all b ∈ lΦ.

(ii) If
∫
0
Ψ(t)
t2

dt < ∞,
∫
0
Φ̃(t)
t2

dt < ∞, Φ(s) dominates the Young function

s
∫ s
0

Ψ(t)
t2

dt globally and Ψ̃(s) dominates the Young function s
∫ s
0

Φ̃(t)
t2

dt globally,
then the discrete Hilbert transform is bounded from lΦ to lΨ, that is for any b ∈ lΦ
we have b̃ ∈ lΨ, and there exists a positive constant C2 such that

∥b̃∥lΨ ≤ C2 · ∥b∥lΦ
for all b ∈ lΦ.

Proof. (ii). At first we note that if Ψ̃(s) dominates the Young function

s
∫ s
0 Φ̃(t)/t2dt globally, then it follows from the inequality

s

∫ s

0

Φ̃(t)

t2
dt ≥ s

∫ s

s/2

Φ̃(t)

t2
dt ≥ sΦ̃

(s
2

)∫ s

s/2

dt

t2
= Φ̃

(s
2

)
that Ψ̃ dominates the Young function Φ̃ globally and, therefore, Φ dominates the
Yung function Ψ globally. Hence, for any b ∈ lΦ we have b ∈ lΨ, and there exists
a positive constant C3 such that

∥b∥lΨ ≤ C3 · ∥b∥lΦ
holds for all b ∈ lΦ.

Let b ∈ lΦ. We define the function f(x) to be π[(n + 1 − x)bn + (x − n)bn+1]
for x ∈ [n, n + 1), n ∈ Z. We first show that f ∈ LΦ. Indeed, for any k > 0 it
follows from the inequality∫

R
Φ(k|f(x)|)dx =

∑
n∈Z

∫ n+1

n
Φ(πk|(n + 1 − x)bn + (x− n)bn+1|)dx

≤
∑
n∈Z

∫ n+1

n
Φ((n + 1 − x)πk|bn| + (x− n)πk|bn+1|)dx

≤
∑
n∈Z

∫ n+1

n
((n + 1 − x)Φ(πk|bn|) + (x− n)Φ(πk|bn+1|))dx =

∑
n∈Z

Φ(πk|bn|)

that f ∈ LΦ and

∥f∥LΦ
≤ C4 · ∥b∥lΦ ,

where C4 > 0 is a constant depending only on Φ.
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Then it follows from Theorem 3.1 that Hf ∈ LΨ and there exists C5 > 0 such
that

∥Hf∥LΨ
≤ C5∥b∥lΦ . (3.2)

We define the function F (x) to be b̃n for x ∈ [n, n + 1), n ∈ Z and

G(x) = (Hf)(x) − F (x). (3.3)

We prove that G(x) ∈ LΨ. For every x ∈ (n, n + 1), n ∈ Z we have

G(x) =
1

π
v.p.

∫
R

f(t)

x− t
dt− b̃n

=
∑
m∈Z

∫ m+1

m

(m + 1 − t)bm + (t−m)bm+1

x− t
dt−

∑
m ̸=n

bm
n−m

=
∑

m∈Z/{n−1,n,n+1,n+2}

bm

[∫ m

m−1

t− (m− 1)

x− t
dt +

∫ m+1

m

m + 1 − t

x− t
dt− 1

n−m

]

+bn−1

[∫ n−1

n−2

t− (n− 2)

x− t
dt +

∫ n

n−1

n− t

x− t
dt− 1

]
+bn

[∫ n

n−1

t− (n− 1)

x− t
dt + v.p.

∫ n+1

n

n + 1 − t

x− t
dt

]
+bn+1

[
v.p.

∫ n+1

n

t− n

x− t
dt +

∫ n+2

n+1

n + 2 − t

x− t
dt + 1

]
+bn+2

[∫ n+2

n+1

t− (n + 1)

x− t
dt +

∫ n+3

n+2

n + 3 − t

x− t
dt +

1

2

]
= G1(x) + G2(x) + G3(x) + G4(x) + G5(x). (3.4)

For any m ∈ Z/{n− 1, n, n + 1, n + 2} it follows from∫ m

m−1

t− (m− 1)

x− t
dt +

∫ m+1

m

m + 1 − t

x− t
dt

≤
∫ m

m−1

t− (m− 1)

n−m
dt+

∫ m+1

m

m + 1 − t

n− (m + 1)
dt =

1

n−m
+

1

2

1

(n−m)(n−m− 1)
,∫ m

m−1

t− (m− 1)

x− t
dt +

∫ m+1

m

m + 1 − t

x− t
dt

≥
∫ m

m−1

t− (m− 1)

n−m + 2
dt +

∫ m+1

m

m + 1 − t

n−m + 1
dt

=
1

n−m
− 1

2

1

(n−m)(n−m + 1)
− 1

(n−m)(n−m + 2)

that ∣∣∣∣∫ m

m−1

t− (m− 1)

x− t
dt +

∫ m+1

m

m + 1 − t

x− t
dt− 1

n−m

∣∣∣∣ ≤ 6

|n−m|2
.

Therefore, for any x ∈ (n, n + 1), n ∈ Z we have

|G1(x)| ≤
∑
m ̸=n

6|bm|
|n−m|2

. (3.5)
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For any k > 0 it follows from (3.5) and (2.1) that∫
R

Ψ

(
k

2π2
|G1(x)|

)
dx ≤

∑
n∈Z

∫ n+1

n
Ψ

∑
m ̸=n

3

π2|n−m|2
· k|bm|

 dx

=
∑
n∈Z

Ψ

∑
m̸=n

3

π2|n−m|2
· k|bm|

 ≤
∑
n∈Z

∑
m̸=n

3

π2|n−m|2
· Ψ(k|bm|)

=
∑
m∈Z

∑
n̸=m

3

π2|n−m|2
· Ψ(k|bm|) =

∑
m∈Z

Ψ(k|bm|). (3.6)

Inequality (3.6) shows that G1 ∈ LΨ and there exists C6 > 0 such that

∥G1∥LΨ
≤ C6∥b∥lΨ ≤ C7∥b∥lΦ , (3.7)

where C7 = C3 · C6.
Let us show that Gi ∈ LΨ for i = 2, 3, 4, 5. For any x ∈ (n, n + 1), n ∈ Z we

have

|G2(x)| = |bn−1| ·
∣∣∣∣∫ n−1

n−2

t− (n− 2)

x− t
dt +

∫ n

n−1

n− x

x− t
dt

∣∣∣∣
≤ |bn−1| ·

[∣∣∣∣∫ n−1

n−2
(t− (n− 2))dt

∣∣∣∣+ (x− n)

∣∣∣∣ln x− n

x− (n− 1)

∣∣∣∣]
= |bn−1| ·

[
1

2
+ (x− n) ln

(
1 +

1

x− n

)]
≤ 3

2
|bn−1|; (3.8)

|G3(x)| = |bn| ·
∣∣∣∣∫ n

n−1

t− (n− 1)

x− t
dt + v.p.

∫ n+1

n

n + 1 − t

x− t
dt

∣∣∣∣
= |bn| ·

∣∣∣∣∫ n

n−1

x− (n− 1)

x− t
dt + v.p.

∫ n+1

n

n + 1 − x

x− t
dt

∣∣∣∣
= |bn| · |(x− (n−1)) ln(x− (n−1))−2(x−n) ln(x−n)− (n+ 1−x) ln(n+ 1−x)|

≤ 5|bn|; (3.9)

|G4(x)| = |bn+1| ·
∣∣∣∣v.p.∫ n+1

n

t− n

x− t
dt +

∫ n+2

n+1

n + 2 − t

x− t
dt + 1

∣∣∣∣
= |bn+1| ·

∣∣∣∣v.p.∫ n+1

n

x− n

x− t
dt +

∫ n+2

n+1

n + 2 − x

x− t
dt + 1

∣∣∣∣
= |bn+1| · |(x−n) ln(x−n)+2(n+1−x) ln(n+1−x)−(n+2−x) ln(n+2−x)+1|

≤ 6|bn+1|; (3.10)

|G5(x)| = |bn+2| ·
∣∣∣∣∫ n+2

n+1

t− (n + 1)

x− t
dt +

∫ n+3

n+2

n + 3 − t

x− t
dt +

1

2

∣∣∣∣
≤ |bn+2| ·

[∣∣∣∣∫ n+2

n+1

x− (n + 1)

x− t
dt

∣∣∣∣+
3

2
+

∣∣∣∣∫ n+3

n+2
(n + 3 − t)dt

∣∣∣∣]
= |bn+2| ·

[
2 + (n + 1 − x) ln

(
1 +

1

n + 1 − x

)]
≤ 3|bn+2|. (3.11)
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It follows from (3.8), (3.9), (3.10) and (3.11) that Gi ∈ LΨ, i = 2, 3, 4, 5 and
there exists C8 > 0 such that

∥G2∥LΨ
+ ∥G3∥LΨ

+ ∥G4∥LΨ
+ ∥G5∥LΨ

≤ C8∥b∥lΦ . (3.12)

Hence, owing to (3.4), (3.7) and (3.12), we conclude that G ∈ LΨ:

∥G∥LΨ
≤ (C7 + C8)∥b∥lΦ . (3.13)

Since F (x) = (Hf)(x) −G(x), by (3.2) and (3.13) we get that F ∈ LΨ:

∥F∥LΨ
≤ (C5 + C7 + C8)∥b∥lΦ .

Therefore it follows from∑
n∈Z

Ψ

(
|b̃n|
λ

)
=
∑
n∈Z

∫ n+1

n
Ψ

(
|F (x)|

λ

)
dx =

∫
R

Ψ

(
|F (x)|

λ

)
dx

that b̃ ∈ lΨ and

∥b̃∥lΨ ≤ (C5 + C7 + C8)∥b∥lΦ .
This completes the proof of part (ii). The proof of part (i) is similar to the proof
of part (ii).
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