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GENERALIZED SEGAL-BARGMANN TRANSFORM AND ITS

APPLICATIONS TO THE FIELDS OF UNCERTAINTY

INEQUALITIES AND PDES

FETHI SOLTANI AND MERIEM NENNI

Abstract. In this paper, we give some applications of the Dunkl-type
Segal-Bargmann transform Bk to the field of uncertainty inequalities and
to the field of partial differential equations. The resolution of the time-
dependent Dunkl-Dirac Laplacian equation and the time-dependent gen-
eralized Dunkl-Schrödinger equation is based on the techniques of the
intertwining operators on the Dunkl-type Fock space Fk(Cd).

1. Introduction

The Fock space F(Cd) is a Hilbert space consisting of entire functions on Cd,
square integrable with respect to the measure

dm(z) :=
1

πd
e−|z|2dxdy, z = x+ iy,

where |z|2 =
∑d

i=1 |zi|2 and dxdy =
∏d

i=1 dxidyi. This space is equipped with
the inner product

⟨f, g⟩F(Cd) :=

∫
Cd

f(z)g(z)dm(z).

The space F(Cd) was introduced by Bargmann [3], is called also Segal-Bargmann
space [6] and was used in many works [8, 30]. Precisely, Chen-Zhu [8] proved an
uncertainty principle of Heisenberg type for the Fock space F(Cd). Next, the
Segal-Bargmann transform B was introduced for the first time by [3, 4] it has
many applications in the quantized Yang-Mills theory on a space-time cylinder
[11], in field of uncertainty inequalities [25] and in field of partial differential
equations [7, 12, 15, 19].

In this paper we recall some properties for the Fock space Fk(Cd) associ-
ated with the Dunkl operators Tj(k), j = 1, . . . , d. The Dunkl-type Fock space

Fk(Cd) is firstly introduced by Soltani [20], next is studied by Ben Said-Orsted
[5]. The space Fk(Cd) is also used in many works [26, 27]. The Dunkl-type
Segal-Bargmann transform Bk associated with a Coxeter group G is studied by
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Soltani et al. [20, 26] and Ben Said-Orsted [5]. This transform has a Plancherel
and an inversion formulas [5, 20, 23]. In the one dimensional case this trans-
form has some applications in field of uncertainty inequalities [24]. However, in
d dimension, the application of this transform in field of uncertainty inequalities
(local-type uncertainty principle, Heisenberg-type uncertainty principle,. . . ) will
be an open topic. This topic requires more details for the inner product of the
Dunkl-type Fock space Fk(Cd).

The purpose of this paper is to review the basic properties of the Dunkl-
type Segal-Bargmann transform Bk in applications to the field of uncertainty
inequalities and to the field of partial differential equations [7, 12, 15, 19]. More
precisely, in Section 3, we give some intertwining relations on the Dunkl-type
Fock space Fk(Cd). In Section 4, we establish a Heisenberg type uncertainty
principle related to the Dunkl-type Segal-Bargmann transform Bk. In Sections 5
and 6, we study the time-dependent heat Cauchy problems associated with the
complex operators

D+
k :=

1

2

d∑
j=1

[Tj(k) + zj ]
2 , D−

k :=
1

2

d∑
j=1

[Tj(k)− zj ]
2 .

The resolution of these problems are based on the techniques of intertwining
relations

B−1
k D+

k = |x|2B−1
k , B−1

k D−
k = ∆kB−1

k ,

where ∆k :=
∑d

j=1 T
2
j (k) is the Dunkl Laplacian. In the last section we de-

scribe the time-dependent generalized Schrödinger equation associated with the
generalized Dunkl harmonic oscillator

Lk := B−1
k EBk,

where E is the complex Euler operator.

Throughout this paper we shall use on Cd the following notations. For all z =

(z1, . . . , zd), w = (w1, . . . , wd) ∈ Cd, w.z =
∑d

j=1wjzj , |w|2 = w.w =
∑d

j=1 |wj |2.

2. Dunk-type Segal-Bargmann space

In this section, we recall some properties for the Fock space Fk(Cd) associated
with the Dunkl operators.

For α ∈ Rd\{0}, let σα be the reflection in the hyperplane Hα ⊂ Rd orthogonal
to α:

σαy := y − 2
α.y

|α|2
α.

A finite set ℜ ⊂ Rd\{0} is called a root system, if ℜ ∩ R.α = {−α, α} and
σαℜ = ℜ for all α ∈ ℜ. We assume that it is normalized by |α|2 = 2 for all
α ∈ ℜ. For a root system ℜ, the reflections σα, α ∈ ℜ, generate a finite group G.
The Coxeter group G is a subgroup of the orthogonal group O(d). All reflections
in G correspond to suitable pairs of roots. For a given β ∈ Rd\

⋃
α∈ℜHα, we fix

the positive subsystem ℜ+ := {α ∈ ℜ : α.β > 0}. Then for each α ∈ ℜ either
α ∈ ℜ+ or −α ∈ ℜ+.



224 FETHI SOLTANI AND MERIEM NENNI

Let k : ℜ → C be a multiplicity function on ℜ (a function which is constant
on the orbits under the action of G). As an abbreviation, we introduce the index

γ = γk :=
∑
α∈ℜ+

k(α).

Throughout this paper, we will assume that the multiplicity is nonnegative, that
is, k(α) ≥ 0 for all α ∈ ℜ.

The Dunkl operators Tj(k), j = 1, . . . , d, on Rd associated with the finite
reflection group G and multiplicity function k are given, for a function f of class
C1 on Rd, by

Tj(k)f(x) :=
∂

∂xj
f(x) +

∑
α∈ℜ+

k(α)
αj

α.x
(f(x)− f(σαx)).

For y ∈ Rd, the initial value problem Tj(k)u(., y)(x) = yju(x, y), j = 1, . . . , d,

with u(0, y) = 1 admits a unique analytic solution on Rd, which will be denoted
by Ek(x, y) and called Dunkl kernel [9, 10]. This kernel has a unique analytic
extension to Cd ×Cd (see [18]). We collect some further properties of the Dunkl
kernel Ek. Let w, z ∈ Cd and λ ∈ C, we have

Ek(w, z) = Ek(z, w), Ek(λw, z) = Ek(w, λz), Ek(w, z) = Ek(w, z).

For z, w ∈ Cd, we define

K(w, z) := Ek(z, w).

From the properties of the Dunkl kernel [10, 18], the kernel K is continuous and
the function z → K(w, z) is holomorphic for all w ∈ Cd. Further, K(w, z) =

K(z, w) and K(w, z) is a positive definite kernel, i.e. for all z(1), . . . , z(ℓ) ∈ Cd

and a1, . . . , aℓ ∈ C:
ℓ∑

i,j=1

aiajK(z(i), z(j)) ≥ 0.

These properties of K lead to the following result.

Theorem 2.1. (See [5]).

(i) There exists a Hilbert space Fk(Cd) of holomorphic functions on Cd, such
that K is its reproducing kernel.

(ii) The Hilbert space Fk(Cd) contains the C-algebra P(Cd) of polynomial
functions on Cd as a dense subspace.

In particular, if we denote by ⟨., .⟩Fk(Cd) the inner product in Fk(Cd), then

⟨p, q⟩Fk(Cd) = p(T (k))q(z)
∣∣∣
z=0

, p, q ∈ P(Cd),

where p(T (k)) is the operator formed by replacing zj by Tj(k) for j = 1, . . . , d.

We shall call Fk(Cd) the Fock space associated with the Coxeter group G or the
Dunkl-type Fock space.

Remark 2.1. From the above theorem, Fk(Cd) is defined by

Fk(Cd) := ⟨K(w, .), w ∈ Cd⟩.
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Here the bar means the completion with respect to the norm ∥f∥Fk(Cd) = ⟨., .⟩1/2Fk(Cd)
.

The Hilbert space Fk(Cd) is uniquely determined by its reproducing kernel K.
Notice that, for k = 0, F0(Cd) coincides with the classical Fock space F(Cd), the
space of holomorphic functions f on Cd such that

∥f∥2F(Cd) :=
1

πd

∫
Cd

|f(z)|2e−|z|2dz < ∞.

Then, we have easily

Theorem 2.2. For all w ∈ Cd and f ∈ Fk(Cd), we have

|f(w)| ≤ [Ek(w,w)]
1/2∥f∥Fk(Cd).

3. Dunkl-type Segal-Bargmann transform

In this section, we recall some properties of the Dunkl-type Segal-Bargmann
transform Bk, and we give some intertwining relations on the Dunkl-type Fock
space Fk(Cd).

Let wk denote the weight function

wk(y) :=
∏

α∈ℜ+

|α.y|2k(α), y ∈ Rd,

which is G-invariant and homogeneous of degree 2γ.

Let ck be the Mehta-type constant given by

ck :=

[∫
Rd

e−|y|2/2wk(y)dy

]−1

.

We denote by µk the measure on Rd given by dµk(y) := ckwk(y)dy; and by
L2
k(Rd), the space of measurable functions f on Rd, such that

∥f∥L2
k(Rd) :=

[∫
Rd

|f(y)|2dµk(y)

]1/2
< ∞.

The following result is crucial in Dunkl’s theory and its applications. Let
w, z ∈ Cd, we have∫

Rd

e−|x|2/2Ek(w, x)Ek(z, x)dµk(x) = e(w.w+z.z)/2Ek(w, z). (3.1)

This interesting formula is used by many authors, see [5, 17, 20]. This is a formula
that we also need in this work.

We denote by Uk the kernel given for w ∈ Cd and x ∈ Rd, by

Uk(w, x) := 2(2γ+d)/4e−(w.w+|x|2)/2Ek(w,
√
2x).

From (3.1), the kernel Uk satisfies the following properties [20].

(a) For all w, z ∈ Cd, we have

Ek(w, z) =

∫
Rd

Uk(w, x)Uk(z, x)dµk(x). (3.2)
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(b) For all w ∈ Cd, the function Uk(w, .) belongs to L2
k(Rd), and

∥Uk(w, .)∥2L2
k(Rd) = Ek(w,w).

The kernel Uk gives rise to an integral transform Bk, which is called Dunkl-type
Segal-Bargmann transform on Cd, and defined for f in L2

k(Rd), by

Bk(f)(w) :=

∫
Rd

Uk(w, x)f(x)dµk(x), w ∈ Cd. (3.3)

The following two theorems are proved in [5, 20].

Theorem 3.1. The Dunkl-type Segal-Bargmann transform Bk is an isometric
isomorphism of L2

k(Rd) onto Fk(Cd). In particular, we have

∥Bk(f)∥Fk(Cd) = ∥f∥L2
k(Rd), f ∈ L2

k(Rd).

In the next part of this section we give some intertwining relations on the
Dunkl-type Fock space Fk(Cd).

We define the Dunkl Laplacian ∆k for f ∈ Fk(Cd) by

∆kf(z) :=
d∑

j=1

T 2
j (k)f(z).

The Dunkl Laplacian can be written as

∆kf(z) = ∆f(z) + 2
∑
α∈ℜ+

k(α)

[
∇f(z).α

α.z
− f(z)− f(σα(z))

(α.z)2

]
,

where ∆ and ∇ denote the usual Laplacian and gradient operators, respectively.
This operator is the goal of many works [5, 14, 17].

We define the complex Dunkl-Dirac Laplacian D+
k : Fk(Cd) → Fk(Cd), by

D+
k :=

d∑
j=1

D2
j (k), (3.4)

where Dj(k) are the complex Dunkl-Dirac operators given by

Dj(k) :=
1√
2
[Tj(k) + zj ] . (3.5)

The operators Dj(k) are studied in [26, 28] and are involved in the demonstration
of the Heisenberg’s uncertainty principle for the Dunkl-type Fock space. The
operators Dj(k) are also used in the study of the Dunkl Riesz transforms [16]. In
the classical case (αj = −1

2) these operators are studied in [8, 19] and are called
complex Dirac operators.

As in the same way we define the complex operator D−
k : Fk(Cd) → Fk(Cd),

by

D−
k :=

d∑
j=1

Q2
j (k), (3.6)

where

Qj(k) :=
1√
2
[Tj(k)− zj ] . (3.7)
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Theorem 3.2. For f ∈ Fk(Cd), we have

(i) D+
k f(z) = Bk|x|2B−1

k (f)(z),

(ii) D−
k f(z) = Bk∆kB−1

k (f)(z).

Proof. (i) For every φ ∈ L2
k(Rd) and xjφ ∈ L2

k(Rd), with j = 1, . . . , d, we
have

Tj(k)(Bk(φ))(z) =

∫
Rd

Tj(k)(Uk(., x))(z)φ(x)dµk(x)

= 2(2γ+d)/4

∫
Rd

Tj(k)(e
−z.z/2Ek(z,

√
2x))e−|x|2/2φ(x)dµk(x)

=
√
2Bk(xjφ)(z)− zjBk(φ)(z).

Hence
Bk(xjφ)(z) = Dj(k)Bk(φ)(z), j = 1, . . . , d. (3.8)

By taking φ = B−1
k (f), with f ∈ Fk(Cd), we deduce that

Bk|x|2B−1
k (f)(z) = D+

k f(z).

The (i) is proved.

(ii) For every φ ∈ L2
k(Rd) and xjφ ∈ L2

k(Rd), with j = 1, . . . , d. From ([26],
page 145) we have

Bk(Tj(k)φ)(z) = Bk(xjφ)(z)−
√
2zjBk(φ)(z).

Combining this relation with (3.8) we get

Bk(Tj(k)φ)(z) = Qj(k)Bk(φ)(z), j = 1, . . . , d. (3.9)

By taking φ = B−1
k (f), with f ∈ Fk(Cd), we deduce that

Bk∆kB−1
k (f)(z) = D−

k f(z).

The (ii) is proved. □

4. Uncertainty principles

In this section, we establish some uncertainty principles for the Dunk-type
Segal-Bargmann space Fk(Cd).

The Dunkl operators Tj(k) and the multiplication operator by zj satisfy [20]

[Tj(k), zj ] = I + Pj(k), (4.1)

where I is the identity operator, and Pj(k) are the operators given by

Pj(k)f(z) :=
∑
α∈ℜ+

k(α)(αj)
2f(σαz), j = 1, . . . , d.

We define the domain of Pj(k) denoted by Dom(Pj(k)) as

Dom(Pj(k)) :=
{
f ∈ Fk(Cd) : Pj(k)f ∈ Fk(Cd)

}
.

Lemma 4.1. (See [5, 20]). The operators Tj(k), zj and Pj(k) satisfy the following
properties.

(i) Dom(Pj(k)) = Fk(Cd),
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(ii) T ∗
j (k) = zj.

Lemma 4.2. (See [13], Proposition 2.1). Let A and B be self-adjoint operators
on a Hilbert space H, then

∥(A− a)f∥H∥(B − b)f∥H ≥ 1

2
|⟨[A,B]f, f⟩H | ,

for all f ∈ Dom([A,B]) and all a, b ∈ C.

Let F+
k (Cd) be the space defined as

F+
k (Cd) :=

{
f ∈ Fk(Cd) : ⟨Pj(k)f, f⟩Fk(Cd) ≥ 0, j = 1, . . . , d

}
.

Theorem 4.1. Let f ∈ F+
k (Cd). For all a, b ∈ C, we have

∥(Dj(k)− a)f∥Fk(Cd)∥(Qj(k) + ib)f∥Fk(Cd) ≥
1

2
∥f∥2Fk(Cd), j = 1, . . . , d, (4.2)

where Dj(k) and Qj(k) are the operators given by (3.5) and (3.7), respectively.

Proof. Let f ∈ F+
k (Cd). Now, let A and B the operators defined by

Af(z) := Dj(k)f(z), Bf(z) := iQj(k)f(z).

From (4.1) and Lemma 4.1, the operators A and B possess the following prop-
erties.

(i) A∗ = A and B∗ = B,

(ii) [A,B] = −i[Tj(k), zj ] = −i[I + Pj(k)],

(iii) Dom([A,B]) = Fk(Cd).

Thus, the inequality (4.2) follows from Lemma 4.2. □

This uncertainty principle give a generalization of the result of Chen-Zhu for
the classical Fock space [8] and of the result of Soltani for the Bessel-type Fock
space [29]. However we obtain the following result.

Theorem 4.2. Let φ ∈ L2
k(Rd) such that Bk(φ) ∈ F+

k (Cd). For all a, b ∈ C, we
have

∥(xj − a)φ∥L2
k(Rd)∥(Tj(k) + ib)φ∥L2

k(Rd) ≥
1

2
∥φ∥2L2

k(Rd), j = 1, . . . , d.

Proof. The result of this theorem follows from Theorem 4.1 by using relations
(3.8) and (3.9) with Theorem 3.1. □

Theorem 4.3. Let f ∈ Fk(Cd). Then

∥D+
k f∥Fk(Cd)∥D−

k f∥Fk(Cd) ≥ (γ + d/2)2∥f∥2Fk(Cd).

Proof. Let φ ∈ L2
k(Rd). From ([22], Theorem 1) we have

∥|x|2φ∥L2
k(Rd)∥∆kφ∥L2

k(Rd) ≥ (γ + d/2)2∥φ∥2L2
k(Rd). (4.3)

We take f = Bk(φ), φ ∈ L2
k(Rd). Then by Theorem 3.1, we have

∥φ∥L2
k(Rd) = ∥Bk(φ)∥Fk(Cd) = ∥f∥Fk(Cd).
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However, by Theorem 3.2 we have

∥|x|2φ∥L2
k(Rd) = ∥Bk|x|2B−1

k (f)∥Fk(Cd) = ∥D+
k f∥Fk(Cd),

∥∆kφ∥L2
k(Rd) = ∥Bk∆kB−1

k (f)∥Fk(Cd) = ∥D−
k f∥Fk(Cd).

We obtain the result of the theorem from relation (4.3). □

5. Dunkl-Dirac Laplacian equation

In this section we give application of the Dunkl-type Segal-Bargmann trans-
form Bk to the time-dependent Dunkl-Dirac Laplacian equation associated with
the complex operator D+

k .

For w, z ∈ Cd and t ≥ 0, we denote by hk(w, z, t) the kernel

hk(w, z, t) :=

∫
Rd

e−t|x|2Uk(w, x)Uk(z, x)dµk(x).

From (3.2), for t = 0 we have

hk(w, z, 0) = Ek(w, z).

Lemma 5.1. For w, z ∈ Cd, we have

hk(w, z, t) =
e−t(w.w+z.z)/2(1+t)

(1 + t)γ+d/2
Ek

(
w√
1 + t

,
z√
1 + t

)
. (5.1)

Proof. For w, z ∈ Cd, we have

hk(w, z, t) =

∫
Rd

e−t|x|2Uk(w, x)Uk(z, x)dµk(x)

= 2γ+d/2e−(w.w+z.z)/2

∫
Rd

e−(1+t)|x|2Ek(w,
√
2x)Ek(z,

√
2x)dµk(x)

=
e−(w.w+z.z)/2

(1 + t)γ+d/2

∫
Rd

e−|x|2/2Ek

(
w√
1 + t

, x

)
Ek

(
z√
1 + t

, x

)
dµk(x).

From relation (3.1), we have∫
Rd

e−|x|2/2Ek

(
w√
1 + t

, x

)
Ek

(
z√
1 + t

, x

)
dµk(x)

= e(w.w+z.z)/2(1+t)Ek

(
w√
1 + t

,
z√
1 + t

)
.

Then, we obtain

hk(w, z, t) =
e−t(w.w+z.z)/2(1+t)

(1 + t)γ+d/2
Ek

(
w√
1 + t

,
z√
1 + t

)
.

We get the desired result. □

Let us consider the heat Cauchy problem
∂

∂t
F (t, z) = −D+

k F (t, z), t > 0, z ∈ Cd,

F (0, z) = f(z) ∈ Fk(Cd),

(5.2)

where D+
k is the complex Dunkl-Dirac Laplacian given by (3.4).
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Theorem 5.1. The solution of the heat Cauchy problem (5.2) is given by the
formula

F (t, z) = ⟨f, hk(., z, t)⟩Fk(Cd),

where hk(w, z, t) is the kernel given by (5.1).

Proof. By applying the inverse of the Bargmann transform B−1
k , with Theorem

3.2 (i) to the Cauchy problem (5.2) we obtain
∂

∂t
Φ(t, x) = −|x|2Φ(t, x), t > 0, x ∈ Rd,

Φ(0, x) = φ(x) ∈ L2
k(Rd),

where φ = B−1
k (f) and Φ(t, .) = B−1

k (F (t, .)). Thus Φ(t, x) satisfies

Φ(t, x) = e−t|x|2φ(x).

This implies that

F (t, z) = Bk(e
−t|x|2φ(x))(z).

Therefore and by (3.3), we obtain

F (t, z) =

∫
Rd

Uk(z, x)e
−t|x|2φ(x)dµk(x)

=

∫
Rd

B−1
k (f)(x)Uk(z, x)e

−t|x|2dµk(x).

According to Theorem 3.1 and Lemma 5.1, we deduce that

F (t, z) = ⟨f,Bk(Uk(z, x)e
−t|x|2)⟩Fk(Cd) = ⟨f, hk(., z, t)⟩Fk(Cd).

The theorem is proved. □

6. Additional result

In this section we solve the time-dependent Cauchy problem associated with
the complex operator D−

k .

The Dunkl-Weierstrass transform [17, 21] is defined for f ∈ L2
k(Rd) and t > 0,

by

Wk,t(f)(x) :=

∫
Rd

Γk(x, y, t)f(y)dµk(y), x ∈ Rd, (6.1)

where Γk(x, y, t) is the kernel given by

Γk(x, y, t) :=
e−(|x|

2+|y|2)/4t

(2t)γ+d/2
Ek

(
x√
2t
,

y√
2t

)
.

For w, z ∈ Cd and t > 0, we denote by qk(w, z, t) the kernel

qk(w, z, t) :=

∫
Rd

∫
Rd

Uk(w, y)Uk(z, x)Γk(x, y, t)dµk(x)dµk(y).

Lemma 6.1. For w, z ∈ Cd, we have

qk(w, z, t) =
et(w.w+z.z)/2(1+t)

(1 + t)γ+d/2
Ek

(
w√
1 + t

,
z√
1 + t

)
. (6.2)
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Proof. For w, z ∈ Cd, we have

qk(w, z, t) =

∫
Rd

∫
Rd

Uk(w, y)Uk(z, x)Γk(x, y, t)dµk(x)dµk(y)

=
e−(w.w+z.z)/2

tγ+d/2

∫
Rd

e−
1+2t
4t

|y|2Ek(w,
√
2y)Jk(y, z, t)dµk(y),

where

Jk(y, z, t) =

∫
Rd

e−
1+2t
4t

|x|2Ek(z,
√
2x)Ek

(
x√
2t
,

y√
2t

)
dµk(x).

According to the proof of Lemma 5.1 we get

Jk(y, z, t) =

(
2t

1 + 2t

)γ+d/2

e
2t

1+2t
z.z+

|y|2
4t(1+2t)Ek

( √
2z√

1 + 2t
,

y√
1 + 2t

)
.

Therefore

qk(w, z, t) =

(
2

1 + 2t

)γ+d/2

e
−w.w

2
+ 2t−1

2(1+2t)
z.z

×
∫
Rd

e−
1+t
1+2t

|y|2Ek(w,
√
2y)Ek

( √
2z√

1 + 2t
,

y√
1 + 2t

)
dµk(y)

=
et(w.w+z.z)/2(1+t)

(1 + t)γ+d/2
Ek

(
w√
1 + t

,
z√
1 + t

)
.

The lemma is proved. □

Let us consider the heat Cauchy problem
∂

∂t
F (t, z) = D−

k F (t, z), t > 0, z ∈ Cd,

F (0, z) = f(z) ∈ Fk(Cd),

(6.3)

where D−
k is the complex operator given by (3.6).

Theorem 6.1. The solution of the heat Cauchy problem (6.3) is given by the
formula

F (t, z) = ⟨f, qk(., z, t)⟩Fk(Cd),

where qk(w, z, t) is the kernel given by (6.2).

Proof. By applying the inverse of the Segal-Bargmann transform B−1
k , with

Theorem 3.2 (ii), to the Cauchy problem (6.3) we obtain
∂

∂t
Φ(t, x) = ∆kΦ(t, x), t > 0, x ∈ Rd,

Φ(0, x) = φ(x) ∈ L2
k(Rd),

where φ = B−1
k (f) and Φ(t, .) = B−1

k (F (t, .)). Thus Φ(t, x) satisfies

Φ(t, x) = Wk,t(φ)(x),

where Wk,t(φ) is the Dunkl-Weierstrass transform given by (6.1) .
This implies that

F (t, z) = Bk(Wk,t(φ))(z).
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Then by (3.3) and (6.1) we have

F (t, z) =

∫
Rd

Uk(z, x)Wk,t(φ)(x)dµk(x)

=

∫
Rd

B−1
k (f)(y)Vk(y, z, t)dµk(y),

where

Vk(y, z, t) :=

∫
Rd

Uk(z, x)Γk(x, y, t)dµk(x).

According to Theorem 3.1 and Lemma 6.1, we deduce that

F (t, z) = ⟨f,Bk(Vk(., z, t))⟩Fk(Cd) = ⟨f, qk(., z, t)⟩Fk(Cd).

The theorem is proved. □

7. Generalized Dunkl harmonic oscillator

In this section we give application of the Dunkl-type Segal-Bargmann trans-
form Bk to time-dependent generalized Dunkl-Schrödinger equation.

We define the Dunkl harmonic oscillator Hk : L2
k(Rd) → L2

k(Rd) by

Hk := −1

2
∆k +

1

2
|x|2 − 1

2
(2γ + d).

Let {ξ1, . . . , ξd} be any orthonormal basis of Cd. On Fk(Cd), Ben Said-Orsted
([5], Theorem 4.12) proved the following intertwining relation

BkHkB−1
k =

d∑
j=1

ξj
∂

∂ξj
.

The Dunkl harmonic oscillatorHk (called also the Dunkl-Schrödinger operator)
is studied by many authors [1, 2, 5, 16].

We define the generalized Dunkl harmonic oscillator Lk : L2
k(Rd) → L2

k(Rd) by

Lkφ(x) := B−1
k EBkφ(x), (7.1)

where E is the complex Euler operator given by

E :=

d∑
j=1

zj
∂

∂zj
, z = (z1, . . . , zd) ∈ Cd.

Let us consider the time-dependent generalized Dunkl-Schrödinger equation i
∂

∂t
Φ(t, x) = LkΦ(t, x), t > 0, x ∈ Rd,

Φ(0, x) = φ(x) ∈ L2
k(Rd).

(7.2)

By applying the Segal-Bargmann transform Bk, with (7.1) to the Cauchy problem
(7.2) we obtain  i

∂

∂t
F (t, z) = EF (t, z), t > 0, z ∈ Cd,

F (0, z) = f(z) ∈ Fk(Cd),

(7.3)
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where f = Bk(φ) and F (t, .) = Bk(Φ(t, .)).

Lemma 7.1. For every f ∈ Fk(Cd), there exists the unique solution to the
Cauchy problem (7.3) given by

F (t, z) = f(ze−it).

Proof. We want to solve the partial differential equation

∂

∂t
F (t, z) + i

d∑
j=1

zj
∂

∂zj
F (t, z) = 0,

with the condition
F (0, z) = f(z) ∈ Fk(Cd).

By the transport equations wj = log zj and τ = it, we have

∂

∂τ
G(τ, w) +

d∑
j=1

∂

∂wj
G(τ, w) = 0.

Then
G(τ, w) = g(w1 − τ, . . . , wd − τ),

where g is found from the initial condition g(log z1, . . . , log zd) = f(z), which
implies that g(z) = f(ez1 , . . . , ezd). Therefore,

F (t, z) = G(τ, w) = g(log z1 − it, . . . , log zd − it) = f(ze−it).

The lemma is proved. □

Theorem 7.1. The solution of the time-dependent Dunkl-Schrödinger equation
(7.2) is given by

Φ(t, x) = B−1
k (F (t, .))(x),

where
F (t, z) = Bk(φ)(ze

−it).
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d’Analyse Mathématique et Applications LR11ES11, Tunis 2092, Tunisia
E-mail address: meriem.nenni@fst.utm.tn

Received: June 18, 2024; Revised: July 18, 2024; Accepted: July 26, 2024


