
Proceedings of the Institute of Mathematics and Mechanics,
National Academy of Sciences of Azerbaijan
Volume 50, Number 2, 2024, Pages 236–241
https://doi.org/10.30546/2409-4994.2024.50.2.236

DEGENERATE FOURIER TRANSFORM ASSOCIATED WITH

THE STURM-LIOUVILLE OPERATOR

A.V. GORSHKOV

Abstract. In this paper we present degenerate Fourier transform, which
is associated with the Sturm-Liouville operator, and define a complete
orthonormal system when the spectrum consists of a continuous part,
and no bigger than a countable set of eigenvalues. We prove Parseval’s
identity and inversion formula for degenerate Fourier transform and give
some examples.

1. Introduction

Most of the known Fourier transforms associated with the equations of math-
ematical physics have a trivial kernel, and an inversion formula as well as the
Parseval’s identity are fulfilled. In other words, the system of the eigenfunctions
involved in the definition of the integral transform is complete.

However, in some cases, the differential operator, in addition to the continuous
part of the spectrum that defines this transform, may contain a set of eigenfunc-
tions {ek}, and the Parseval’s identity takes the form

∥f∥2 = ∥F [f ]∥2 +
∑
k

(f, ek)
2, (1.1)

where {ek} are the elements from kerF . In that case F becomes the degenerate
transform.

For example, the sine-Fourier transform

f̂(λ) =

√
2

π

∫ ∞

0
sin(λs)f(s)ds

is based on the eigenfunctions of A = d2/dx2 in L2(0,∞) with the Dirichlet
condition f(0) = 0. The spectrum of the operator is continuous and fills the
entire negative half-axis: σc = (−∞, 0]. This transform is not degenerate, and
the inversion formula has the form

f(x) =
2

π

∫ ∞

0
sin(λx)

(∫ ∞

0
sin(λs)f(s)ds

)
dλ.
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Functions φ(x, λ) = sin(λx) are the generalized eigenfunctions (since they don’t
belong to the main space L2(0,∞), where the operator is defined):

∂xxφ(x, λ) = −λ2φ(x, λ).

Similarly, the same operator with the Neumann condition generates a cosine
Fourier transform. However, d2/dx2 with a Robin boundary condition

f ′(0) + af(0) = 0 (1.2)

with a > 0, in addition to its generalized eigenfunctions contains an ordinary
eigenfunction e−ax with an eigenvalue of a2. Its spectrum consists of a continuous
part σc = (−∞, 0] and an eigenvalue λ = a2. The Fourier transform generated
by this operator will already have a nontrivial kernel (see [5]).

Functions

φ(x, λ) =

√
2

π

λ cos(λx)− sin(λx)√
λ2 + 1

satisfy Robin boundary condition (1.2) with a = 1. Together with an eigenfunc-
tion

e0(x) =
e−x

√
2

they form a complete set of orthogonal functions for Laplace operator. The
inversion formula has the following form:

f(x) =
2

π

∫ ∞

0
φ(x, λ)

(∫ ∞

0
φ(s, λ)f(s)ds

)
dλ+ e0(e0, f).

Integral transform

F [f ] =

∫ ∞

0

λ cos(λs)− sin(λs)√
λ2 + 1

f(s)ds

vanishes on function e0, which means that φ(x, λ) is orthogonal to e0 and the
Parseval’s identity holds:

∥f∥2L2(0,∞) = ∥F [f ]∥2L2(0,∞) + (e0, f)
2.

However, the mixed boundary condition with a > 0 refers to non-physical, and,
as a rule, is not considered in differential equations.

Another example of a family of operators which are connected with the degen-
erate transforms are

∆k =
1

r

∂

∂r

(
r
∂

∂r

)
− k2

r2
, k ∈ R.

For integers k, these operators are the Fourier coefficients of the Laplacian when
it is decomposed into a Fourier series by an angular variable in polar coordinates.

These operators with the mixed boundary condition

r0
∂w(t, r)

∂r

∣∣∣
r=r0

± kw(t, r0) = 0 (1.3)

in addition to the continuous spectrum σc = (−∞, 0) also have an eigenvalue
λ = 0 from the kernel of ∆k (here r0 > 0 is a fixed number). The kernel ker(∆k)
consists of the eigenfunctions 1/r±k (for certain values of k). They also produce a
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degenerate transform, which is a generalization of the integral Weber transform,
the properties of which were investigated by the author in [1].

Weber transform Wk,k±1[·] for k ∈ R, r0 > 0 is defined as

Wk,k±1[f ](λ) =

∫ ∞

r0

Jk(λs)Yk±1(λr0)− Yk(λs)Jk±1(λr0)√
J2
k±1(λr0) + Y 2

k±1(λr0)
f(s)s ds, (1.4)

where Jk, Yk are the Bessel functions of the first and second kind.
The inverse transform is given by the following formula:

W−1
k,k±1[f̂ ](r) =

∫ ∞

0

Jk(λr)Yk±1(λr0)− Yk(λs)Jk±1(λr0)√
J2
k±1(λr0) + Y 2

k±1(λr0)
f̂(λ)λ dλ . (1.5)

Operator ∆k combined with the Robin boundary condition (1.3) has the eigen-
functions e±0,k from the kernel of W :

e+0,k =

{
c+k r

k, k < −1,

0, k ≥ −1,
e−0,k =

{
c−k /r

k, k > 1,

0, k ≤ 1,

with normalization coefficients c±k .
In [1] there was proved the inversion formula for functions f(·), f(r)

√
r ∈

L1(r0,∞) ∩ L2(r0,∞), r0 > 0:

f = W−1
k,k±1 [Wk,k±1[f ]] + (f, e±0,k)e

±
0,k.

And these transforms, precisely as a degenerate one, had found an application
in mathematical physics. With its help, the author obtained a solution to the
Stokes problem in the exterior of the circle (see [2]). All this confirms the impor-
tance of such a degenerate transforms not only for the theory of functions, but
also as having practical importance.

2. Completeness of a system of eigenfunctions

Let the Sturm-Liouville operator Af(x) = f ′′ − q(x)f , defined on the semiaxis
x ∈ (0,∞), have a spectrum σ(A), which consists of a continuous part E ⊂ R,
and no bigger than a countable set of eigenvalues {λk} of the finite multiplicity
with eigenfunctions {ek}. As is known[5][4], if q(x) is continuous on R+, then
there exist the generalized eigenfunctions φ(x, λ) specifying the Fourier transform

F [f ] =

∫ ∞

0
φ(x, λ)f(x)dx, Aφ(x, λ) = λφ(x, λ).

At the same time, there is a spectral function ρ(λ) such that F [f ] belongs to the
space L2 with the weight ρ(λ): F [f ] ∈ L2 (E, ρ(λ)).

Definition 2.1. Let’s call the functions φ(x, λ) to be orthonormal, denoting as
⟨φ(·, λ), φ(·, ζ)⟩ = δ(λ− ζ) if

f̂(λ) =

∫ ∞

0
φ(x, λ)

(∫
E
φ(x, ζ)f̂(ζ)dρ(ζ)

)
dx (2.1)

for any function f̂(λ) of the form f̂(λ) = F [f(·)](λ), f(x) ∈ L2(R+).
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Equality in this definition follows from the formal applying of the δ-function
δ(λ− ζ) to f̂(λ). The formula (2.1) is the inversion formula f̂ = F [F ∗[f̂ ]] for the

inverse Fourier transform F ∗, and it will be valid only for functions f̂ from the
image of F . And the inversion formula for the direct transform f = F ∗[F [f ]] will

be valid for f ∈ ker⊥ F .

Definition 2.2. We will say that {{φ(·, λ)}, {ek}} is a complete orthonormal
system of eigenfunctions of the operator A if ⟨φ(·, λ), φ(·, ζ)⟩ = δ(λ− ζ),
⟨φ(·, λ), ek⟩L2(R+) = 0, (ek, ej)L2(R+) = δk,j for any λ, ζ ∈ E, any eigenfunctions

ek, ej , and the Parseval’s identity (1.1) holds.

The condition ⟨φ(·, λ), ek⟩L2(R+) = 0 means that F is the degenerate transform,

i.e. F [ek] = 0.

Theorem 2.1. Let the Sturm-Liouville operator A be a generator of a strongly
continuous semigroup etA in L2(0,∞); its spectrum is real, bounded from above,
consists of a continuous part and no bigger than a countable set of eigenvalues
{ek}, and the resolvent satisfies the estimate ∥R(A, λ)∥ ≤ C/λ with some C > 0.
Then the system of its eigenfunctions forms a complete orthonormal system and
the following inversion formula holds:

f(x) =

∫
E
φ(x, λ)

(∫
R+

φ(s, λ)f(s)ds

)
dρ(λ) +

∑
k

(f, ek)ek. (2.2)

Proof. Consider the boundary value problem in L2(R+):

∂ty(t, x)−Ay = 0, y(0, x) = f(x).

Using the estimate on the resolvent R(A, λ) from the conditions of the theorem,
the solution y(t, ·) = etAf(·) of this equation can be given by the formula

y(t, ·) = 1

2πi

∫
γ
eλtR(A, λ)f(·)dλ,

where the contour γ covers the real spectrum of the operator A. In the case of an
unbounded spectrum γ is the boundary of the sector Sa,θ = {λ ∈ C, | arg(λ−a)| >
θ} with some a > 0, θ ∈ (π2 , π).

The resolvent has a gap along the set E, and the points λk are its poles.
Integral

Pk =
1

2πi

∫
|λ−λk|=ε

R(A, λ)dλ

for a sufficiently small ε is a finite-dimensional projector onto the proper subspace
Ek (see [3]). And then the solution takes the following form:

y(t, ·) = 1

2πi

∫
E
eλt (R(A, λ− i · 0)−R(A, λ+ i · 0)) f(·)dλ+

∑
k

eλkt(f, ek)ek.

The integral in the last equality defines a family of projectors on the generalized
proper subspace and can be expressed in terms of the eigenfunctions φ(x, λ),
giving the final formula for y(t, x):

y(t, x) =

∫
E
eλtφ(x, λ)

(∫
R+

φ(s, λ)f(s)ds

)
dρ(λ) +

∑
k

eλkt(f, ek)ek. (2.3)
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Let’s prove the inversion formula (2.2). Then it will follow the completeness of
a system of eigenfunctions. Since A is the generator of the strongly continuous
semigroup etA, then y(t, ·) → f(x) strongly at t → 0. If the set of the continuous
spectrum E is bounded, then passing to the limit at t → 0 is allowed under
the sign of the integral in (2.3) and the inversion formula is proved. If E is not
bounded, then we must justify the limit transition at t → 0. It is enough to prove
the validity of a limit transition only in the integral part of the equality (2.3).
Let’s prove weak convergence at t → 0:

y(t, x) ⇁

∫
E
φ(x, λ)

(∫
R+

φ(s, λ)f(s)ds

)
dρ(λ) +

∑
k

(f, ek)ek.

Take an arbitrary g ∈ C∞
0 (r0,∞). Then ĝ(λ) = F [g(·)](λ) will decrease rapidly

by λ as it claimed in the following proposition:

Proposition 2.1. For an arbitrary g ∈ C∞
0 (r0,∞), k > 0 holds λkĝ(λ) ∈

L2 (E, ρ(λ)).

Proof. Since Aφ = λφ, then

ĝ(λ) =

∫ ∞

0
φ(x, λ)g(x)dx =

1

λk

∫ ∞

0
Ak[φ(x, λ)]g(x)dx

=
1

λk

∫ ∞

0
φ(x, λ)Ak[g(x)]dx.

Since Ak[g(x)] ∈ L2(R+), then
∫∞
0 φ(x, λ)Ak[g(x)]dx ∈ L2 (E, ρ(λ)) and the

proposition is proved. □

Denote

F ∗[ĝ(·)](x) =
∫
E
φ(x, λ)ĝ(λ)dρ(λ).

Then (
F ∗

[
eλtF [f ]

]
, g(·)

)
L2(R+)

=
(
eλtF [f ], F [g]

)
L2(E,ρ(λ))

=
(
eλtf̂(λ), ĝ(λ)

)
L2(E,ρ(λ))

,

where f̂(λ) = F [f ](λ), ĝ(λ) = F [g](λ).
The residuals of integrals∫ L

−∞

∣∣∣eλtf̂(λ)ĝ(λ)∣∣∣ dρ(λ) = ∫ L

−∞

∣∣∣∣∣eλt f̂(λ)λ
ĝ(λ)λ

∣∣∣∣∣ dρ(λ) ≤ 1

|L|
∥f̂(λ)∥∥ĝ(λ)λ∥

converge to zero uniformly over t as L → −∞. Consequently, we have proved the
validity of the transition at t → 0:(

eλtf̂(λ), ĝ(λ)
)
L2(E,ρ(λ))

→
(
f̂(λ), ĝ(λ)

)
L2(E,ρ(λ))

.

From the uniqueness of the weak limit, taking into account y(t, ·) → f(·), the
inversion formula is valid almost everywhere

f(·) = F ∗ [F [f ]] +
∑
k

(f, ek)ek, (2.4)

and the formula (2.2) is proved.
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Let’s prove that ek ∈ ker(F ):∫ ∞

0
φ(x, λ)ek(x)dx =

1

λ

∫ ∞

0
A[φ(x, λ)]ek(x)dx =

1

λ

∫ ∞

0
φ(x, λ)Aek(x)dx

=
λk

λ

∫ ∞

0
φ(x, λ)ek(x)dx,

which implies F [ek] = 0.
The orthogonality condition (2.1) follows from the inversion formula (2.4) if

we apply the transform F to the latter:

f̂ = F
[
F ∗f̂

]
.

The Parseval’s identity (1.1) follows from the inversion formula (2.2) in virtue of
the orthonormality of {{φ(·, λ)}, {ek}}. The theorem is proved. □
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