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PUTNAM-FUGLEDE THEOREMS AND ORTHOGONALITY OF
AN ELEMENTARY OPERATOR IN %, CLASSES

MOHAMED MORJANE, SOUKAINA MADANI, MOHAMED ECH-CHAD,
AND YOUSSEF BOUHAFSI

Abstract. Given Hilbert space commuting operators T, S € L(H ), such
that T is w-hyponormal with kerT C kerT* and S is normal. Let
¢r,s € L(L(H)) be the elementary operator defined by ¢r s(X) =
TXS* — SXT*. In this paper, we show firstly that (1) ker(¢r.s |
€p) C ker(¢r+ s+ | €p); (2) The range of ¢r g | 6, is orthogonal to
the kernel of ¢r s | 6, ( R(¢r,s | 6p) L ker(ér.s | 6,) ) if and only if
ker T'Nker S = {0}. Secondly, we will extend these results to the elemen-
tary operator ® € L(L(H)) defined by ®(X) = AXD — CXB where
[A,C] = [B,D] = 0. Related orthogonality results for the elementary
operator ® are also given.

1. Introduction

Let H be a separable complex Hilbert space and let £(H) denote the algebra
of all bounded linear operators on H into itself. The familiar Putnam-Fuglede
theorem [10, Problem 152], asserts that if 7,.S € £L(H) are normal operators and
TX = XS for some X € L(H), then T*X = XS*. The problem of extending
the Putnam-Fuglede theorem has been considered by a large number authors,
and numerous generalizations of this theorem have appeared over the recent past.
The cited references [3, 12, 14, 15] are among various extensions of this celebrated
theorem for non-normal classes of operators.

G. Weiss [16] obtained an interesting generalization of the Putnam-Fuglede
theorem involving four normal operators. In a way that, if (4,C) and (B, D)
are two pairs of commuting normal operators on H, then AXD = C X B implies
A*XD* = C*XB* for all X € L(H). This result was generalized by T. Furuta
[7] to hyponormal operators with the Hilbert-Schmidt hypothesis on X. In other
words, if A, B,C,D € L(H), with A, B*,C and D* are hyponormal, CA* = A*C
and BD* = D*B, then AXD = CXB implies A*XD* = C* X B* for every X in
the Hilbert-Schmidt class.

Let T' € L(H) be compact, and let s1(T") > s2(T") > - - - > 0 denote the singular
values of T" arranged in their decreasing order. The operator T is said to belong
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to the Schatten p-class ), if

0 1/p
i1, = (E2s@r) 7 = (@) <oo, 1<p<oo,

Sl(T)a b =00,

where ’tr’ denotes the trace functional. Given subspaces M and N of a Banach
space V with norm ||.||, then M is said to be orthogonal to N in the sense
of Birkhof-James, denoted M L N, if ||m + n|| > |n| for all m € M and
n € N. The range-kernel orthogonality of elementary operators has been studied
by a number of authors over recent decades. For A, B € L(H), the generalized
derivation 04,5 € L(L(H)) is defined by 64, 5(X) = AX — X B. In [2] Bouali and
Cherki proved that if A and B are normal, then the range R(d4 p | %)) of da.B
is orthogonal to its kernel ker(d4,5 | 6,). These results have been extended to a
diversity of elementary operators ® € L(L(H)), where ®(X) = AXD — CXB,
for a variety of choices of tuples of commuting operators (A, C) and (B, D) (see
[5, 9, 11, 13] for further references). In particular, A. Turnsék [13] proved that
if A, C respectively B, D are nonzero normal commuting operators, then R(® |
¢p) L ker(® | 6,) if and only if

ker A Nker C' = ker B* Nker D* = {0}.

An operator T is called w-hyponormal if |T| > |T| > ‘(T)* where |T'| = (T*T)%

and T = |T|Y2U|T|'/?, is the Aluthge transform of T. We say that T is w.-
hyponormal and we note T' € w,— H, if T' is w-hyponormal and ker(7") C ker(7™).
In this paper we consider the elementary operator ¢ g(X) = TXS* — SXT*
where T' € w, — H and S is normal operator with T'S = ST'. It will be shown the
inclusion ker(¢7.5 | 6,) C ker(¢r+ g+ | 6p). This implies that if ® € L(L(H)) is
the elementary operator ®(X) = AXD —CXB, where A, B* € w,— H, C and D
are normal such that AC' = CA and BD = DB, then ker(® | ¢,) C ker(®. | €,),
where ®, : X € L(H) — A*XD* — C*XB*. Which gives both an extension of
the Putnam-Fuglede property and the Weiss’s theorem. Another purpose of this
paper is to investigate the range-kernel orthogonality of the elementary operators
or,s and ® in €, classes. We conclude this section with some notations.

For X a linear operator acting on Banach space E, we denote by X*, ker(X),
ker X, R(X) and X |y respectively the adjoint, the kernel, the orthogonal com-
plement of the kernel, the range of X and the restriction of X to an invariant
subspace M. For g and w two vectors in H, we define g ® w € L(H) as follows:

gRw(r) = (x,w)g for all x € H.

Recall that an operator T € L(H) is said to be hyponormal if T*T > TT*.
Hyponormal operators have been studied by many authors and it is known that
hyponormal operators have many interesting properties similar to those of normal
operators [8]. An operator T is said to be p-hyponormal if (T*T)" > (TT*)?
for p €]0,1] and an operator T is said to be log-hyponormal if T" is invertible
and log |T'| > log |T™|. p-hyponormal and log-hyponormal operators are defined
as extension of hyponormal operator. The classes of log- and w-hyponormal
operators were introduced and their properties were studied in [1]. In particular,
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it was shown in [1] that the class of w-hyponormal operators contains both p-
and log-hyponormal operators. Moreover, it is easy to see that w-hyponormal
operators T are paranormal (i.c., ||[Tz[]? < HTQxH for all unit vectors = € H).
The w-hyponormal operators have some interesting properties, amongst them
that the restriction of a w-hyponormal operator to an invariant subspace is again
a w-hyponormal operator, the inverse of an invertible w-hyponormal operator is
again w-hyponormal.

2. Main results

Lemma 2.1. [3] If A, B € w, — H are such that [A, B] = [A*,B] =0 and B is
invertible, then AB~! € w, — H.

Theorem 2.1. Let T € w. — H and S € L(H) is normal such that T'S = ST. If
T or S is injective, then for 1 < p < oo, the following assertions holds:

(i)  ker(¢rs | €p) C ker(¢r= g+ | €p).
(it) For all X,Y € L(H) such thatY € ker (¢7.5 | 6,) we have

lo7,s(X) + Y, > [[Y]], -

Proof. Firstly, assume that S is injective and for a natural number n, let A, =
{Ae C: |\ <1/n}andlet Eg (A,,) denote the corresponding spectral projection.
Set I — Eg(A,) = P,; then P, — I in the strong topology. Since T'S = ST,
the Fuglede’s Theorem implies 7'S* = S*T" and so R(F,) reduces both T and S.
Hence

T=Ti,®Ts, and S =51, ® S, on H, = H =ker(P,) ® R(P,),
where T;,, are w,-hyponormal (i = 1,2), Si, is normal and Ss,, is invertible
normal. Now and for Y € ker(¢rs | 6,), let Y, = P,YP,, hence ¥;, — Y
weakly (even, strongly). Also, if we set R, = T5,,5; i, then we have

Poors(Y)P, = P, (TYS* — SYT™) P,
=T (PLY Po) S5, — Son (PRY Py) Ty,
= TZ,nYnS;,n - S2,nYnT2*m
= Son (RnYn — Yo R;) S5,

which means that Y;, € ker(dg, R;)~ Since R, is wy-hyponormal by Lemma 2.1,
then [3, Lemma 2.4] implies that Y,, € ker(dr: r,). Hence

Pnd)T*,S* (Y>Pn =P, (T*YS - S*YT) P,
= S;,n (R;Yn - Yan) S2,n
= O’

and as result Y € ker(¢r= g« | €p). Secondly, it results from [2], Theorem 2.2,
that

H(SRT“R;; (Zn) + Yan > HYan for all Z, € L(R(P,)).
Thus for Z,, = ngXnS%‘,n, we would have

HT2,anS;,n - S2,anT2*,n + Yan 2 ||Yn”p7
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for all X,, = P,XP, € L(R(P,)). It follows that
l¢7.5(X) + Y, > (1P (b7.5(X) + V) Poll,, = [| T2 XS5, = S2.0 XaT5,, + Ya, > 1Vl -
Therefore, since [|Yy, — [[Y[|p,

l¢7,5(X) + Y|, > Y]], for all X € L(H) and Y € ker (¢r,5 | %p) -

Now, suppose that T is injective and let Y € ker (¢7.5 | 6,). So, we can write
T,S and Y on Hy = H = (ker(S))* @ ker(S) as
_ _ (Y
T=N®R,S=5 @0, andY = ( Y Y ),

with NY157 = S1Y1N*, i.e Y] € ker(¢n,s, | €p) and S1YoR* = RY3S57 = 0, hence
Yo = Y3 = 0. As result, since N € w, — H and Sy is injective, the first case
implies that Y1 € ker(¢n«s: | 6), which equivalent to Y € ker (¢7= g+ | 6)).

X1 Xo )
X3 X, ) € L(Hy), then we have:

||¢)T,S(X)+Y||p: H< (z)N,Sl()il)—{—}/l ;4 )

More things, let X = <

S H( OnNs (X1)+Y1 0 >
» - 0 Y4

p

since the norm of an operator matrix always dominates the norm of its diagonal
part. Also, we can deduce from the first case that:

3=

1
lé7.s(X) +Ylp = (lén,s, (X1) +Yalp + [1Yallp)» > (IVillp + 1Yallp) 7 = [1Y]lp-

O

Remark 2.1. It’s easy to check that Theorem 2.1 remains valid for the following
assumptions: 7" is normal and S is w,-hyponormal, by using the fact that ¢7 g =

— s,

We consider the elementary operator ® € L(L(H)) defined by ®(X) = AXD—
CX B, with ®,(X) = A*XD* — C*X B*. We therefore deduce that:

Corollary 2.1. Let A,B,C,D € L(H) such that AC = CA and BD = DB. If
one of the following conditions hold:

(i) A, B* € w, — H are injective, C' and D are normal operators,
(ii) A,B* € w, — H, C and D are normal injective operators,
(iii) C,D* € w, — H are injective, A and B are normal operators,
(iv) C,D* € w, — H, A and B are normal injective operators.

Then for 1 < p < oo, ker(® | 6,) C ker(®, | €,) and we have
12(X) + T, = [IT1], ,
for all X, T € L(H) such that T € ker(® | 6,).

) B* 0 D* 0
mef_LetTeker(fb]%p)andpu‘cT—(O A)’S_<O C)and

Y = < ;)“ 8 > be defined on H @& H. This gives us TS = ST andYEker((ﬁTS\

%p). By our assumptions and Theorem 2.1, we get Y € ker(¢;. . | ;) which
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equivalent to T € ker(®, | €,), furthermore, for all X = ( ; 8 > €eL(H®H),
we have
[6,50%) +7]| = ; o =
s P AXD -CXB+T 0 o P’
Therefore, we obtain the desired result. ]

Remark 2.2. If we take C' = D = I, we can see that the preceding corollary
generalizes Lemma 2.4. of [3] for da g = 04 B | €. In addition, it extends Bouali
and Cherki’s inequality [2] for w,-hyponormal operators.

Theorem 2.2. Let T € w, — H and S € L(H) be normal operator such that
TS =8T. If TXS* = SXT* for some operator X € 6,, then we have T*XS =
S*XT.

Proof. Since T'S = ST and S is normal then by Fuglede’s Theorem T*S5 = ST*.
It follows that (ker S)* reduce 7. Therefore

T=N&Ron Hy=H = (ker(S))* @ ker(S).
We can write S and X on Hj as:
(S5 0 (X1 X
S—( 0 0) andX-(X3 X, )
Since T'S = ST we have NS; = S1N. Thus it TXS* = SXT* then NX;5] =
S1X1N*, with N € w, — H and 57 is normal injective. So by Theorem 2.1,

we get N*X151 = S{X1N. By the same way, we obtain that S;1XoR* = 0 and
RX3S7 = 0. Thus, by the Putnam-Fuglede theorem, we have

S1(XoR*) = (X2R") -0 and 0- (RX3) = (RX3)S] =
ST(XoR") = (X2R")-0" and 0" - (RX3) = (RX3)S].

We have also R € w, — H, then [3, Lemma 2.4] ensures that:

0-(S7X2) = (S]X2)R" and R(X3S51) = (X351) -0 =

0" - (S7X2) = (STX2)R and R*(X351) = (X3571) - 0.

Hence S7X2R = R* X351 =0 and as a result 7% XS = S*XT. [
Corollary 2.2. Let A,B,C,D € L(H) such that AC = CA and BD = DB.
Then, AXD = CXB and X € ¢, itmplies A*XD* = C*XB* in each of the
following cases:

(i) A,B*€w,—H,C and D are normal,
(ii) C,D* € w, — H and A and B are normal.

Remark 2.3. Our results generalize the Weiss’s Theorem [16], as well as the
Putnam-Fuglede property (F, P)%Jp for wy-hyponormal operators by taking C' =
D = 1. Also, as a consequence of Corollary 2.2 and Duggal’s result [6], We'll get:

Corollary 2.3. Let A,B,C,D € L(H) such that AC = CA and BD = DB.
Then,

|B(X) + T3 = |®(X)|2 4 |T||3 for all X € L(H) and T € ker (® | ).

i each of the following cases:
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(i) A,B*€w,— H,C and D are normal,
(ii) C,D* € w, — H and A and B are normal.

Proposition 2.1. Let A,B,C,D € L(H) such that AC = CA and BD = DB.
If one of the following assertions is verified
(i) A,B*,D* € w,— H, C is normal, D is invertible and BD* = D*B,
(ii) A,B*,C € wy, — H, D is normal, C is invertible and AC* = C*A,
(iii) C,B* D* € w, — H, A is normal, B is invertible and BD* = D*B,
(iv) A,B*,D* € w, — H, B is normal, A is invertible and AC* = C*A. Then
we have the implication
AXD =CXB = A*XD*=C*XB" for all X € €.

Proof. 1t is an immediate consequence of Corollary 2.2 and Lemma 2.1. 0

Proposition 2.2. Let T,S € L(H). If T,S € w. — H are doubly commuting
operators such that |T'|S = S|T*|. Then, TXS* = SXT* implies T*XS = S*XT
for all X € 6.

Proof. By hypothesis, we have T'S — ST = T*S—ST* = 0, It follows that (ker S)=*
reduce T" and T'|(y, )+ is normal. This means

T=N@&Ron Hy=H = (ker(S))* @ ker(S).

Since ker S C ker S*, ker S reduces S. Hence, we can write S and X on Hy as

follows:
(S0 (X1 X
S< 0 0) andX<X3 X4>'
From T'S = ST we have NS = S1N. Thus if TXS5* = SXT* then NX;57 =
S1X1N* with S; € wy—H and N is normal. So by Theorem 2.2 we get N* X151 =
STX1N. Also, we find that S1XoR* = 0 and RX3S] = 0 with R € w,— H. So by
using [3], Lemma 2.4, the rest of the proof is similar to that of theorem 2.2. [

Example 2.1. Let T' € L(H) be p-hyponormal such that 7' = T} & T, on the
space H = H; ® Ho, where T} is the normal part of T" and 75 is the pure part of
T i.e., Ty is p-hyponormal and has no invariant subspace M such that T3|,, is
normal. If we define S = N &0 on H, where N is a w,-hyponormal operator on
H; which commute with 77 (as example N = I). A simple calculation shows that
TS = ST and T*S = ST* using Fuglede’s theorem. Also, |T'|S = S|T*| since
|T*| = |T1| ® |T5|. The operators T' and S satisfy the hypothesis of Proposition
2.2, hence:

TXS*=8XT" = T*XS=S5"XT for all X € %,.

Based on Theorem 2.1, we then give next a generalization of this Theorem,
replacing the condition ” T or S is injective ” by ” ker "N ker S = {0} 7.

Theorem 2.3. Let T € w, — H and S € L(H) is normal such that TS = ST
and suppose that kerT Nker S = {0}. Then for 1 < p < oo, ker(¢prs | €p) C
ker(¢r= g+ | 6p), and we have

lo7,s(X) + Y, > [[Y]],,
for every Y € ker (¢7.5 | 6,) and for all X € L(H).
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Proof. If T or S is injective, we obtain the desired result by using Theorem 2.1. So
let us assume that neither 7" nor S is injective. With respect to the decomposition
Hy = H = ker S @ ker S, we get

(N O (S 0
T—(O R),and5—<0 O>

where R = T, ¢ is injective by hypothesis. Now, we have two cases:
N = 0: In this case and if Y € ker(¢7,5 | €)) has the form ¥V = }{1 ? >
3 i

on Hy, we obtain S1YoR* = RY3S5] = 0, which means that Y5 = Y3 = 0. Thus,

X; X
o100 = 0= 6r-: (1) and o X = (1 2 ) € L0110

l¢r,s(X) + Y|, = H( RX3S* H( ) p

since the norm of an operator matrix always dominates the norm of its diagonal
part.

—-S X R*
L5 ) — ¥l

N # 0: Since Ty, g is injective and N = T, g1 is not injective. Also, of
the fact that T is paranormal, ker S* © ker N is invariant subspace of 7. With
respect to the decomposition H; = H = (ker S+ © ker N) @ ker N & ker S, we
find that

1 0 0 S1 0 0
T = 0 0 0 and S = 0 Sy 0
0 0 Ty 0O 0 O

where operators T; and S;, 1 < i < 2, are injective with 77 € wy, — H. From the
hypothesis TY S* = SYT™*, we obtain

Yo 0 0
Y = 0 Yo 0 , and TlYlle = SlyllTl*a ie Y1 € ker(d>T1,gl | cgp)
0 0 Ys3

Then Theorem 2.1 implies that Y11 € ker(¢rs s | 6)) which equivalent to Y €

ker(¢r= g+ | 6,). Furthermore and for X = [Xij]%jzl € L(Hy),
o185 (X11) + Y o« %
lor,s(X) +Yl, = * Yo
* *  Ya3

p

v

[(&71,5, (X11) + Y11) @ Ya2 ® Y33,

since the norm of an operator matrix always dominates the norm of its diagonal
part. From Theorem 2.1, we can infer that

lo7,5(X) + Y > ([or,s (X11) + Yiu |5 + [[Yazl5 + [[Y33][3)

1
> (Y1l + [[Ya2llh + (| Yas|lh) »
= HY”p-

3=
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Corollary 2.4. Let A,B* € w, — H and let C,D € L(H) be two normal op-
erators, such that AC = CA and BD = DB. Suppose that ker A N kerC' =
ker B* Nker D = {0}. Then for 1 < p < oo, ker(® | 6,) C ker(®, | €,), and we
have

[2(X) + Tl > [T,
for allT € ker(® | 6,) and for all X € L(H).

Theorem 2.4. Let T € w, — H and S be a normal operator such that TS = ST
and ¢r,s # 0. Then for 1 < p < oo with p # 2

[¢7,5(X) +Yp = [Vl
holds for every Y € ker(¢r.5 | €,) and for all X € L(H) if and only if ker T'N
ker S = {0}.

Proof. By Theorem 2.3, it suffices to show that, ker T'Nker S = {0} is a necessary
condition for R(¢rs | €p) L ker(¢prs | €,), when T and S are not injective.
Suppose that ker T'Nker S # {0} and decompose Hy = H = ker S* @ ker S, then

(N O (51 0
T—<0 R)andS—(O O)OHHO.

First, assume that ker T # ker S. Without loss of generality, we can also assume
that ker S ¢ kerT. Then R = T'|, . ¢ is a nonzero operator with nontrivial kernel.
With respect to the decomposition

Hy = H = ker S* @ (ker S © ker R) @ ker R

one obtains T =T, ®To ® 0 and S = 51 & 0P 0, where Tb and S are injective.
From the hypothesis TY S* = SYT™ we get

Yn 0 Y3
Y= 0 Yy Y | and T1Y11S] = Si1Yu1y,
Y31 Yo Yi
so that the other Y entries are arbitrary. Let e be a nonzero vector of H. Choose
0 e®ie 0 0 0 0
X=| e®ie 0 0 andY = 0 0 Ya3
0 0 0 0 Ysz Ya3
Then
0 —Sie®Tyie 0
¢T75(X) +Y = The ® Syie 0 Yos
0 Y32 Y33
. . 0 —S1e ® Thie . .
Since C = The ® Syie 0 is a nonzero (S; and T are injective)

self-adjoint operator of finite rank, we can use [13], Lemma 2.4, for p # 1 to find
operators Ys3, Y39 and Y3z such that

0 O 0
¢r,s(X) + Y|, < 0 0 Yo = [[Y][p-
0 Yz Vi3

For p =1, [13, lemma 2.4] can be used again, because if the operator C'is of rank
two and has eigenvalues A1, Ao with |A;| = |A2], then a simple calculation shows
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that |[A1] = || if and only if ||The||||S1e|| = 1 and (Tre, Sie) = 0 for all e € H.
Hence S7T5 = 0 which means that S; = 0 since T5 is injcetive. We are therefore
faced with a contradiction with our hypothesis that ¢r g # 0.

In the case ker T = ker S, it’s clear that R = T|,,,¢ = 0 and N = T'|, . g1 is
injective. From TY S§* = SYT*, it follows that

Y = ( N ) on Hy with NY; S} = S, N*,

Y; Yy
such that the other entries of Y are arbitrary. Let us choose Y7 = 0 and X =
e®1ie 0
< 0 0 > Then

[ Ne® Siie — Sie® Nie Y
¢T75<X)+Y_( v 7).

If D = Ne® Siie — S1e ® Nie = 0 for all e € H, then, since N and S; are
injective, we would have S; = ¢N with ¢ € R. This would imply contrary to our
assumption, that ¢ g = 0. Thus D becomes a nonzero self-adjoint operator of
finite rank. We can also end the proof in a similar way to the first case. O

Remark 2.4. (1) The condition ¢7 g # 0 in Theorem 2.4 is essential. It’s enough
to take 7' = 0 and S is a non-injective operator, to see that R(¢r s | 6,) L
ker(¢7,s | ¢p) cannot imply that ker T'Nker S = {0} when ¢7 g = 0.

(2) Bouali and Cherki prove in [2] that ker(da g | €p) C ker(da= g« | €p) im-
plies R(da,8 | €p) L ker(da,B | 6,). But the following example proves that
ker(¢r,s | €p) C ker(¢r+ g+ | €)) cannot imply that R(¢rs | 6,) L ker(¢r g |
%p) for 1 < p < oo with p#2.

Example 2.2. Let Hy = H & H and define the operators:

I 0 il 0
T_<O R) andS—( 0 0),
where R is w,-hyponormal non injective operator on H (as example R = 0). Then
we have T' € wy, — H, S is normal and T'S = ST. Hence Theorem 2.2 ensures that
ker(¢r,s | €p) C ker(¢pr= g+ | 6,). But the assumption ker T'Nker S = {0} implies

that R is injective, which is not the case. Since ¢r,g # 0 ( ¢ 5(L & 0) # 0 ), it
follows from Theorem 2.4 that R(¢7,s | 6,) is not orthogonal to ker(¢r s | €)).

Corollary 2.5. Let A, B* € w,—H and let C, D € L(H) be two normal operators
such that AC = CA and BD = DB, and assume that ® # 0 such that A, B, C
and D are nonzero. Then for 1 < p < oo with p # 2

12(X) +Tllp = [Tl

for all T € ker(® | ¢,) and for all X € L(H) if and only if ker ANkerC =
ker B* Nker D = {0}.

Remark 2.5. The condition ker A Nker C' = ker B* Nker D = {0} in Corollary 2.5
is not necessary for R(® | 6,) L ker(® | 4,) if one of the operators A, B, C or
D is zero. It’s enough to take A € w, — H a nonzero operator with nontrivial
kernel, C' = 0 and D = I to find that ® = 64,0 # 0. It follows from [3], Lemma
2.4, that (A,0) has (F, P)¢,, which implies that R(® | €,) L ker(® | €,) by [4,

Lemma 4]. ’
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Proposition 2.3. Let A, B,C, D € L(H) be nonzero operators such that AC' =
CA, BD = DB and ® # 0.

(1) If BD* = D*B and under any one of the following conditions:
(i) A,B*,D* € w, — H, C is normal and D is invertible,
(ii) C,B* D* € w,— H, A is normal and B is invertible.
For 1 < p < oo with p # 2, there holds

12(X) +Tllp = [Tl

for allT € ker(® | €)) and for all X € L(H) if and only if ker Anker C' = {0}.
(2) If AC* = C*A and if one of the following conditions hold:

(i) A,B*,C € w,— H, D is normal and C is invertible,

(ii) A,B*,D* € w, — H, B is normal and A is invertible.

Then, for 1 < p < oo with p # 2, we have

12(X) +Tllp = [Tl

for all T € ker(® | 6,) and for all X € L(H) if and only if ker B* Nker D =
{0}

Proof. By hypothesis of the case (i), we have T € ker(® | 4,) if and only if
T € ker(®g | ), where & : X € L(H) = AXI — CXBD~!. So by Lemma 2.1
and Corollary 2.5, we have ker A Nker C' = {0} if and only if

|Po(Y)+T||, > ||T||, for all T' € ker(P®g | €,) = ker(® | 6,) and for all Y € L(H),
which equivalent to ( by taking Y = XD ):
|®(X) + T, > ||T]p for all T' € ker(P | €,) and for all X € L(H).

We can prove the other cases in the same way. O
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