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PUTNAM-FUGLEDE THEOREMS AND ORTHOGONALITY OF

AN ELEMENTARY OPERATOR IN Cp CLASSES

MOHAMED MORJANE, SOUKAINA MADANI, MOHAMED ECH-CHAD,
AND YOUSSEF BOUHAFSI

Abstract. Given Hilbert space commuting operators T, S ∈ L(H), such
that T is w-hyponormal with kerT ⊆ kerT ∗ and S is normal. Let
ϕT,S ∈ L(L(H)) be the elementary operator defined by ϕT,S(X) =
TXS∗ − SXT ∗. In this paper, we show firstly that (1) ker(ϕT,S |
Cp) ⊂ ker(ϕT∗,S∗ | Cp); (2) The range of ϕT,S | Cp is orthogonal to
the kernel of ϕT,S | Cp ( R(ϕT,S | Cp) ⊥ ker(ϕT,S | Cp) ) if and only if
kerT ∩kerS = {0}. Secondly, we will extend these results to the elemen-
tary operator Φ ∈ L(L(H)) defined by Φ(X) = AXD − CXB where
[A,C] = [B,D] = 0. Related orthogonality results for the elementary
operator Φ are also given.

1. Introduction

Let H be a separable complex Hilbert space and let L(H) denote the algebra
of all bounded linear operators on H into itself. The familiar Putnam-Fuglede
theorem [10, Problem 152], asserts that if T, S ∈ L(H) are normal operators and
TX = XS for some X ∈ L(H), then T ∗X = XS∗. The problem of extending
the Putnam-Fuglede theorem has been considered by a large number authors,
and numerous generalizations of this theorem have appeared over the recent past.
The cited references [3, 12, 14, 15] are among various extensions of this celebrated
theorem for non-normal classes of operators.

G. Weiss [16] obtained an interesting generalization of the Putnam-Fuglede
theorem involving four normal operators. In a way that, if (A,C) and (B,D)
are two pairs of commuting normal operators on H, then AXD = CXB implies
A∗XD∗ = C∗XB∗ for all X ∈ L(H). This result was generalized by T. Furuta
[7] to hyponormal operators with the Hilbert-Schmidt hypothesis on X. In other
words, if A,B,C,D ∈ L(H), with A,B∗, C and D∗ are hyponormal, CA∗ = A∗C
and BD∗ = D∗B, then AXD = CXB implies A∗XD∗ = C∗XB∗ for every X in
the Hilbert-Schmidt class.

Let T ∈ L(H) be compact, and let s1(T ) ⩾ s2(T ) ⩾ · · · ⩾ 0 denote the singular
values of T arranged in their decreasing order. The operator T is said to belong
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to the Schatten p-class Cp if

∥T∥p =


(∑∞

j=1 sj(T )
p
)1/p

= (tr(T )p)1/p < ∞, 1 ⩽ p < ∞,

s1(T ), p = ∞,

where ’tr’ denotes the trace functional. Given subspaces M and N of a Banach
space V with norm ∥.∥, then M is said to be orthogonal to N in the sense
of Birkhof-James, denoted M ⊥ N , if ∥m + n∥ ⩾ ∥n∥ for all m ∈ M and
n ∈ N . The range-kernel orthogonality of elementary operators has been studied
by a number of authors over recent decades. For A,B ∈ L(H), the generalized
derivation δA,B ∈ L(L(H)) is defined by δA,B(X) = AX−XB. In [2] Bouali and
Cherki proved that if A and B are normal, then the range R(δA,B | Cp) of δA,B

is orthogonal to its kernel ker(δA,B | Cp). These results have been extended to a
diversity of elementary operators Φ ∈ L(L(H)), where Φ(X) = AXD − CXB,
for a variety of choices of tuples of commuting operators (A,C) and (B,D) (see
[5, 9, 11, 13] for further references). In particular, A. Turnsěk [13] proved that
if A,C respectively B,D are nonzero normal commuting operators, then R(Φ |
Cp) ⊥ ker(Φ | Cp) if and only if

kerA ∩ kerC = kerB∗ ∩ kerD∗ = {0}.

An operator T is called w-hyponormal if |T̃ | ≥ |T | ≥
∣∣∣(T̃ )∗∣∣∣ where |T | = (T ∗T )

1
2

and T̃ = |T |1/2U |T |1/2, is the Aluthge transform of T . We say that T is w∗-
hyponormal and we note T ∈ w∗−H, if T is w-hyponormal and ker(T ) ⊆ ker(T ∗).
In this paper we consider the elementary operator ϕT,S(X) = TXS∗ − SXT ∗

where T ∈ w∗−H and S is normal operator with TS = ST . It will be shown the
inclusion ker(ϕT,S | Cp) ⊂ ker(ϕT ∗,S∗ | Cp). This implies that if Φ ∈ L(L(H)) is
the elementary operator Φ(X) = AXD−CXB, where A,B∗ ∈ w∗−H, C and D
are normal such that AC = CA and BD = DB, then ker(Φ | Cp) ⊂ ker(Φ∗ | Cp),
where Φ∗ : X ∈ L(H) 7→ A∗XD∗ − C∗XB∗. Which gives both an extension of
the Putnam-Fuglede property and the Weiss’s theorem. Another purpose of this
paper is to investigate the range-kernel orthogonality of the elementary operators
ϕT,S and Φ in Cp classes. We conclude this section with some notations.

For X a linear operator acting on Banach space E, we denote by X∗, ker(X),
kerX⊥, R(X) and X|M respectively the adjoint, the kernel, the orthogonal com-
plement of the kernel, the range of X and the restriction of X to an invariant
subspace M. For g and ω two vectors in H, we define g ⊗ ω ∈ L(H) as follows:

g ⊗ ω(x) = ⟨x, ω⟩g for all x ∈ H.

Recall that an operator T ∈ L(H) is said to be hyponormal if T ∗T ≥ TT ∗.
Hyponormal operators have been studied by many authors and it is known that
hyponormal operators have many interesting properties similar to those of normal
operators [8]. An operator T is said to be p-hyponormal if (T ∗T )p ≥ (TT ∗)p

for p ∈]0, 1] and an operator T is said to be log-hyponormal if T is invertible
and log |T | ≥ log |T ∗|. p-hyponormal and log-hyponormal operators are defined
as extension of hyponormal operator. The classes of log- and w-hyponormal
operators were introduced and their properties were studied in [1]. In particular,
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it was shown in [1] that the class of w-hyponormal operators contains both p-
and log-hyponormal operators. Moreover, it is easy to see that w-hyponormal
operators T are paranormal (i.e., ∥Tx∥2 ⩽

∥∥T 2x
∥∥ for all unit vectors x ∈ H).

The w-hyponormal operators have some interesting properties, amongst them
that the restriction of a w-hyponormal operator to an invariant subspace is again
a w-hyponormal operator, the inverse of an invertible w-hyponormal operator is
again w-hyponormal.

2. Main results

Lemma 2.1. [3] If A,B ∈ w∗ −H are such that [A,B] = [A∗, B] = 0 and B is
invertible, then AB−1 ∈ w∗ −H.

Theorem 2.1. Let T ∈ w∗ −H and S ∈ L(H) is normal such that TS = ST . If
T or S is injective, then for 1 ≤ p < ∞, the following assertions holds:

(i) ker(ϕT,S | Cp) ⊂ ker(ϕT ∗,S∗ | Cp).
(ii) For all X,Y ∈ L(H) such that Y ∈ ker (ϕT,S | Cp) we have

∥ϕT,S(X) + Y ∥p ≥ ∥Y ∥p .

Proof. Firstly, assume that S is injective and for a natural number n, let ∆n =
{λ ∈ C : |λ| ⩽ 1/n} and let ES (∆n) denote the corresponding spectral projection.
Set I − ES (∆n) = Pn; then Pn → I in the strong topology. Since TS = ST ,
the Fuglede’s Theorem implies TS∗ = S∗T and so R(Pn) reduces both T and S.
Hence

T = T1,n ⊕ T2,n and S = S1,n ⊕ S2,n on Hn = H = ker(Pn)⊕R(Pn),

where Ti,n are w∗-hyponormal (i = 1, 2), S1,n is normal and S2,n is invertible
normal. Now and for Y ∈ ker(ϕT,S | Cp), let Yn = PnY Pn, hence Yn −→ Y

weakly (even, strongly). Also, if we set Rn = T2,nS
−1
2,n, then we have

PnϕT,S(Y )Pn = Pn (TY S∗ − SY T ∗)Pn

= T2,n (PnY Pn)S
∗
2,n − S2,n (PnY Pn)T

∗
2,n

= T2,nYnS
∗
2,n − S2,nYnT

∗
2,n

= S2,n (RnYn − YnR
∗
n)S

∗
2,n,

which means that Yn ∈ ker(δRn,R∗
n
). Since Rn is w∗-hyponormal by Lemma 2.1,

then [3, Lemma 2.4] implies that Yn ∈ ker(δR∗
n,Rn). Hence

PnϕT ∗,S∗(Y )Pn = Pn (T
∗Y S − S∗Y T )Pn

= S∗
2,n (R

∗
nYn − YnRn)S2,n

= 0,

and as result Y ∈ ker(ϕT ∗,S∗ | Cp). Secondly, it results from [2], Theorem 2.2,
that ∥∥δRn,R∗

n
(Zn) + Yn

∥∥
p
≥ ∥Yn∥p for all Zn ∈ L (R(Pn)) .

Thus for Zn = S2,nXnS
∗
2,n, we would have∥∥T2,nXnS

∗
2,n − S2,nXnT

∗
2,n + Yn

∥∥
p
≥ ∥Yn∥p ,
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for all Xn = PnXPn ∈ L (R(Pn)). It follows that

∥ϕT,S(X) + Y ∥p ≥ ∥Pn(ϕT,S(X) + Y )Pn∥p =
∥∥T2,nXnS

∗
2,n − S2,nXnT

∗
2,n + Yn

∥∥
p
≥ ∥Yn∥p .

Therefore, since ∥Yn∥p −→ ∥Y ∥p,

∥ϕT,S(X) + Y ∥p ≥ ∥Y ∥p for all X ∈ L(H) and Y ∈ ker (ϕT,S | Cp) .

Now, suppose that T is injective and let Y ∈ ker (ϕT,S | Cp). So, we can write

T , S and Y on H0 = H = (ker(S))⊥ ⊕ ker(S) as

T = N ⊕R,S = S1 ⊕ 0, and Y =

(
Y1 Y2
Y3 Y4

)
,

with NY1S
∗
1 = S1Y1N

∗, i.e Y1 ∈ ker(ϕN,S1 | Cp) and S1Y2R
∗ = RY3S

∗
1 = 0, hence

Y2 = Y3 = 0. As result, since N ∈ w∗ − H and S1 is injective, the first case
implies that Y1 ∈ ker(ϕN∗,S∗

1
| Cp), which equivalent to Y ∈ ker (ϕT ∗,S∗ | Cp).

More things, let X =

(
X1 X2

X3 X4

)
∈ L(H0), then we have:

∥ϕT,S(X) + Y ∥p =
∥∥∥∥( ϕN,S1(X1) + Y1 ∗

∗ Y4

)∥∥∥∥
p

≥
∥∥∥∥( ϕN,S1(X1) + Y1 0

0 Y4

)∥∥∥∥
p

since the norm of an operator matrix always dominates the norm of its diagonal
part. Also, we can deduce from the first case that:

∥ϕT,S(X) + Y ∥p ≥
(
∥ϕN,S1(X1) + Y1∥pp + ∥Y4∥pp

) 1
p ≥

(
∥Y1∥pp + ∥Y4∥pp

) 1
p = ∥Y ∥p.

□

Remark 2.1. It’s easy to check that Theorem 2.1 remains valid for the following
assumptions: T is normal and S is w∗-hyponormal, by using the fact that ϕT,S =
−ϕS,T .

We consider the elementary operator Φ ∈ L(L(H)) defined by Φ(X) = AXD−
CXB, with Φ∗(X) = A∗XD∗ − C∗XB∗. We therefore deduce that:

Corollary 2.1. Let A,B,C,D ∈ L(H) such that AC = CA and BD = DB. If
one of the following conditions hold:

(i) A,B∗ ∈ w∗ −H are injective, C and D are normal operators,
(ii) A,B∗ ∈ w∗ −H, C and D are normal injective operators,
(iii) C,D∗ ∈ w∗ −H are injective, A and B are normal operators,
(iv) C,D∗ ∈ w∗ −H, A and B are normal injective operators.

Then for 1 ≤ p < ∞, ker(Φ | Cp) ⊂ ker(Φ∗ | Cp) and we have

∥Φ(X) + T∥p ≥ ∥T∥p ,

for all X,T ∈ L(H) such that T ∈ ker(Φ | Cp).

Proof. Let T ∈ ker(Φ | Cp) and put T̂ =

(
B∗ 0
0 A

)
, S =

(
D∗ 0
0 C

)
and

Y =

(
0 0
T 0

)
be defined on H⊕H. This gives us T̂ S = ST̂ and Y ∈ ker(ϕT̂ ,S |

Cp). By our assumptions and Theorem 2.1, we get Y ∈ ker(ϕT̂ ∗,S∗ | Cp) which
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equivalent to T ∈ ker(Φ∗ | Cp), furthermore, for all X̂ =

(
0 0
X 0

)
∈ L(H⊕H),

we have ∥∥∥ϕT̂ ,S(X̂) + Y
∥∥∥
p
=

∥∥∥∥( 0 0
AXD − CXB + T 0

)∥∥∥∥
p

≥ ∥Y ∥p .

Therefore, we obtain the desired result. □

Remark 2.2. If we take C = D = I, we can see that the preceding corollary
generalizes Lemma 2.4. of [3] for dA,B = δA,B | Cp. In addition, it extends Bouali
and Cherki’s inequality [2] for w∗-hyponormal operators.

Theorem 2.2. Let T ∈ w∗ − H and S ∈ L(H) be normal operator such that
TS = ST . If TXS∗ = SXT ∗ for some operator X ∈ Cp, then we have T ∗XS =
S∗XT .

Proof. Since TS = ST and S is normal then by Fuglede’s Theorem T ∗S = ST ∗.
It follows that (kerS)⊥ reduce T . Therefore

T = N ⊕R on H0 = H = (ker(S))⊥ ⊕ ker(S).

We can write S and X on H0 as:

S =

(
S1 0
0 0

)
and X =

(
X1 X2

X3 X4

)
.

Since TS = ST we have NS1 = S1N . Thus if TXS∗ = SXT ∗ then NX1S
∗
1 =

S1X1N
∗, with N ∈ w∗ − H and S1 is normal injective. So by Theorem 2.1,

we get N∗X1S1 = S∗
1X1N . By the same way, we obtain that S1X2R

∗ = 0 and
RX3S

∗
1 = 0. Thus, by the Putnam-Fuglede theorem, we have

S1(X2R
∗) = (X2R

∗) · 0 and 0 · (RX3) = (RX3)S
∗
1 =⇒

S∗
1(X2R

∗) = (X2R
∗) · 0∗ and 0∗ · (RX3) = (RX3)S1.

We have also R ∈ w∗ −H, then [3, Lemma 2.4] ensures that:

0 · (S∗
1X2) = (S∗

1X2)R
∗ and R(X3S1) = (X3S1) · 0 =⇒

0∗ · (S∗
1X2) = (S∗

1X2)R and R∗(X3S1) = (X3S1) · 0∗.
Hence S∗

1X2R = R∗X3S1 = 0 and as a result T ∗XS = S∗XT . □

Corollary 2.2. Let A,B,C,D ∈ L(H) such that AC = CA and BD = DB.
Then, AXD = CXB and X ∈ Cp implies A∗XD∗ = C∗XB∗ in each of the
following cases:

(i) A,B∗ ∈ w∗ −H, C and D are normal,
(ii) C,D∗ ∈ w∗ −H and A and B are normal.

Remark 2.3. Our results generalize the Weiss’s Theorem [16], as well as the
Putnam-Fuglede property (F, P )Cp for w∗-hyponormal operators by taking C =
D = I. Also, as a consequence of Corollary 2.2 and Duggal’s result [6], We’ll get:

Corollary 2.3. Let A,B,C,D ∈ L(H) such that AC = CA and BD = DB.
Then,

∥Φ(X) + T∥22 = ∥Φ(X)∥22 + ∥T∥22 for all X ∈ L(H) and T ∈ ker (Φ | C2) .

in each of the following cases:
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(i) A,B∗ ∈ w∗ −H, C and D are normal,
(ii) C,D∗ ∈ w∗ −H and A and B are normal.

Proposition 2.1. Let A,B,C,D ∈ L(H) such that AC = CA and BD = DB.
If one of the following assertions is verified

(i) A,B∗, D∗ ∈ w∗ −H, C is normal, D is invertible and BD∗ = D∗B,
(ii) A,B∗, C ∈ w∗ −H, D is normal, C is invertible and AC∗ = C∗A,
(iii) C,B∗, D∗ ∈ w∗ −H, A is normal, B is invertible and BD∗ = D∗B,
(iv) A,B∗, D∗ ∈ w∗ −H, B is normal, A is invertible and AC∗ = C∗A. Then

we have the implication

AXD = CXB =⇒ A∗XD∗ = C∗XB∗ for all X ∈ Cp.

Proof. It is an immediate consequence of Corollary 2.2 and Lemma 2.1. □

Proposition 2.2. Let T, S ∈ L(H). If T, S ∈ w∗ − H are doubly commuting
operators such that |T |S = S|T ∗|. Then, TXS∗ = SXT ∗ implies T ∗XS = S∗XT
for all X ∈ Cp.

Proof. By hypothesis, we have TS−ST = T ∗S−ST ∗ = 0, It follows that (kerS)⊥

reduce T and T |(kerS)⊥ is normal. This means

T = N ⊕R on H0 = H = (ker(S))⊥ ⊕ ker(S).

Since kerS ⊆ kerS∗, kerS reduces S. Hence, we can write S and X on H0 as
follows:

S =

(
S1 0
0 0

)
and X =

(
X1 X2

X3 X4

)
.

From TS = ST we have NS1 = S1N . Thus if TXS∗ = SXT ∗ then NX1S
∗
1 =

S1X1N
∗ with S1 ∈ w∗−H andN is normal. So by Theorem 2.2 we getN∗X1S1 =

S∗
1X1N . Also, we find that S1X2R

∗ = 0 and RX3S
∗
1 = 0 with R ∈ w∗−H. So by

using [3], Lemma 2.4, the rest of the proof is similar to that of theorem 2.2. □

Example 2.1. Let T ∈ L(H) be p-hyponormal such that T = T1 ⊕ T2 on the
space H = H1 ⊕H2, where T1 is the normal part of T and T2 is the pure part of
T ; i.e., T2 is p-hyponormal and has no invariant subspace M such that T2|M is
normal. If we define S = N ⊕ 0 on H, where N is a w∗-hyponormal operator on
H1 which commute with T1 (as example N = I). A simple calculation shows that
TS = ST and T ∗S = ST ∗ using Fuglede’s theorem. Also, |T |S = S|T ∗| since
|T ∗| = |T1| ⊕ |T ∗

2 |. The operators T and S satisfy the hypothesis of Proposition
2.2, hence:

TXS∗ = SXT ∗ =⇒ T ∗XS = S∗XT for all X ∈ Cp.

Based on Theorem 2.1, we then give next a generalization of this Theorem,
replacing the condition ” T or S is injective ” by ” kerT ∩ kerS = {0} ”.

Theorem 2.3. Let T ∈ w∗ − H and S ∈ L(H) is normal such that TS = ST
and suppose that kerT ∩ kerS = {0}. Then for 1 ≤ p < ∞, ker(ϕT,S | Cp) ⊂
ker(ϕT ∗,S∗ | Cp), and we have

∥ϕT,S(X) + Y ∥p ≥ ∥Y ∥p ,

for every Y ∈ ker (ϕT,S | Cp) and for all X ∈ L(H).
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Proof. If T or S is injective, we obtain the desired result by using Theorem 2.1. So
let us assume that neither T nor S is injective. With respect to the decomposition
H0 = H = kerS⊥ ⊕ kerS, we get

T =

(
N 0
0 R

)
, and S =

(
S1 0
0 0

)
where R = T |kerS is injective by hypothesis. Now, we have two cases:

N = 0: In this case and if Y ∈ ker(ϕT,S | Cp) has the form Y =

(
Y1 Y2
Y3 Y4

)
on H0, we obtain S1Y2R

∗ = RY3S
∗
1 = 0, which means that Y2 = Y3 = 0. Thus,

ϕT,S(Y ) = 0 = ϕT ∗,S∗(Y ) and for X =

(
X1 X2

X3 X4

)
∈ L(H0),

∥ϕT,S(X) + Y ∥p =
∥∥∥∥( Y1 −S1X1R

∗

RX3S
∗
1 Y4

)∥∥∥∥
p

≥
∥∥∥∥( Y1 0

0 Y4

)∥∥∥∥
p

= ∥Y ∥p

since the norm of an operator matrix always dominates the norm of its diagonal
part.

N ̸= 0: Since T |kerS is injective and N = T |kerS⊥ is not injective. Also, of

the fact that T is paranormal, kerS⊥ ⊖ kerN is invariant subspace of T . With
respect to the decomposition H1 = H =

(
kerS⊥ ⊖ kerN

)
⊕ kerN ⊕ kerS, we

find that

T =

 T1 0 0
0 0 0
0 0 T2

 and S =

 S1 0 0
0 S2 0
0 0 0


where operators Ti and Si, 1 ≤ i ≤ 2, are injective with T1 ∈ w∗ −H. From the
hypothesis TY S∗ = SY T ∗, we obtain

Y =

 Y11 0 0
0 Y22 0
0 0 Y33

 , and T1Y11S
∗
1 = S1Y11T

∗
1 , i.e Y11 ∈ ker(ϕT1,S1 | Cp).

Then Theorem 2.1 implies that Y11 ∈ ker(ϕT ∗
1 ,S

∗
1
| Cp) which equivalent to Y ∈

ker(ϕT ∗,S∗ | Cp). Furthermore and for X = [Xij ]
3
i,j=1 ∈ L(H1),

∥ϕT,S(X) + Y ∥p =

∥∥∥∥∥∥
 ϕT1,S1(X11) + Y11 ∗ ∗

∗ Y22 ∗
∗ ∗ Y33

∥∥∥∥∥∥
p

≥ ∥(ϕT1,S1(X11) + Y11)⊕ Y22 ⊕ Y33∥p
since the norm of an operator matrix always dominates the norm of its diagonal
part. From Theorem 2.1, we can infer that

∥ϕT,S(X) + Y ∥p ≥
(
∥ϕT1,S1(X11) + Y11∥pp + ∥Y22∥pp + ∥Y33∥pp

) 1
p

≥
(
∥Y11∥pp + ∥Y22∥pp + ∥Y33∥pp

) 1
p

= ∥Y ∥p.

□
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Corollary 2.4. Let A,B∗ ∈ w∗ − H and let C,D ∈ L(H) be two normal op-
erators, such that AC = CA and BD = DB. Suppose that kerA ∩ kerC =
kerB∗ ∩ kerD = {0}. Then for 1 ≤ p < ∞, ker(Φ | Cp) ⊂ ker(Φ∗ | Cp), and we
have

∥Φ(X) + T∥p ≥ ∥T∥p,
for all T ∈ ker(Φ | Cp) and for all X ∈ L(H).

Theorem 2.4. Let T ∈ w∗ −H and S be a normal operator such that TS = ST
and ϕT,S ̸= 0. Then for 1 ≤ p < ∞ with p ̸= 2

∥ϕT,S(X) + Y ∥p ≥ ∥Y ∥p
holds for every Y ∈ ker(ϕT,S | Cp) and for all X ∈ L(H) if and only if kerT ∩
kerS = {0}.

Proof. By Theorem 2.3, it suffices to show that, kerT ∩kerS = {0} is a necessary
condition for R(ϕT,S | Cp) ⊥ ker(ϕT,S | Cp), when T and S are not injective.

Suppose that kerT ∩ kerS ̸= {0} and decompose H0 = H = kerS⊥ ⊕ kerS, then

T =

(
N 0
0 R

)
and S =

(
S1 0
0 0

)
on H0.

First, assume that kerT ̸= kerS. Without loss of generality, we can also assume
that kerS ⊈ kerT . Then R = T |kerS is a nonzero operator with nontrivial kernel.
With respect to the decomposition

H1 = H = kerS⊥ ⊕ (kerS ⊖ kerR)⊕ kerR

one obtains T = T1 ⊕ T2 ⊕ 0 and S = S1 ⊕ 0⊕ 0, where T2 and S1 are injective.
From the hypothesis TY S∗ = SY T ∗ we get

Y =

 Y11 0 Y13
0 Y22 Y23
Y31 Y32 Y33

 and T1Y11S
∗
1 = S1Y11T

∗
1 ,

so that the other Y entries are arbitrary. Let e be a nonzero vector of H. Choose

X =

 0 e⊗ ie 0
e⊗ ie 0 0
0 0 0

 and Y =

 0 0 0
0 0 Y23
0 Y32 Y33

 .

Then

ϕT,S(X) + Y =

 0 −S1e⊗ T2ie 0
T2e⊗ S1ie 0 Y23

0 Y32 Y33

 .

Since C =

(
0 −S1e⊗ T2ie

T2e⊗ S1ie 0

)
is a nonzero (S1 and T2 are injective)

self-adjoint operator of finite rank, we can use [13], Lemma 2.4, for p ̸= 1 to find
operators Y23, Y32 and Y33 such that

∥ϕT,S(X) + Y ∥p <

∥∥∥∥∥∥
 0 0 0

0 0 Y23
0 Y32 Y33

∥∥∥∥∥∥
p

= ∥Y ∥p.

For p = 1, [13, lemma 2.4] can be used again, because if the operator C is of rank
two and has eigenvalues λ1, λ2 with |λ1| = |λ2|, then a simple calculation shows
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that |λ1| = |λ2| if and only if ∥T2e∥∥S1e∥ = 1 and ⟨T2e, S1e⟩ = 0 for all e ∈ H.
Hence S∗

1T2 = 0 which means that S1 = 0 since T2 is injcetive. We are therefore
faced with a contradiction with our hypothesis that ϕT,S ̸= 0.

In the case kerT = kerS, it’s clear that R = T |kerS = 0 and N = T |kerS⊥ is
injective. From TY S∗ = SY T ∗, it follows that

Y =

(
Y1 Y2
Y3 Y4

)
on H0 with NY1S

∗
1 = S1Y1N

∗,

such that the other entries of Y are arbitrary. Let us choose Y1 = 0 and X =(
e⊗ ie 0
0 0

)
. Then

ϕT,S(X) + Y =

(
Ne⊗ S1ie− S1e⊗Nie Y2

Y3 Y4

)
.

If D = Ne ⊗ S1ie − S1e ⊗ Nie = 0 for all e ∈ H, then, since N and S1 are
injective, we would have S1 = cN with c ∈ R. This would imply contrary to our
assumption, that ϕT,S = 0. Thus D becomes a nonzero self-adjoint operator of
finite rank. We can also end the proof in a similar way to the first case. □

Remark 2.4. (1) The condition ϕT,S ̸= 0 in Theorem 2.4 is essential. It’s enough
to take T = 0 and S is a non-injective operator, to see that R(ϕT,S | Cp) ⊥
ker(ϕT,S | Cp) cannot imply that kerT ∩ kerS = {0} when ϕT,S = 0.

(2) Bouali and Cherki prove in [2] that ker(δA,B | Cp) ⊂ ker(δA∗,B∗ | Cp) im-
plies R(δA,B | Cp) ⊥ ker(δA,B | Cp). But the following example proves that
ker(ϕT,S | Cp) ⊂ ker(ϕT ∗,S∗ | Cp) cannot imply that R(ϕT,S | Cp) ⊥ ker(ϕT,S |
Cp) for 1 ≤ p < ∞ with p ̸= 2 .

Example 2.2. Let H0 = H ⊕H and define the operators:

T =

(
I 0
0 R

)
and S =

(
iI 0
0 0

)
,

where R is w∗-hyponormal non injective operator onH (as example R = 0). Then
we have T ∈ w∗−H, S is normal and TS = ST . Hence Theorem 2.2 ensures that
ker(ϕT,S | Cp) ⊂ ker(ϕT ∗,S∗ | Cp). But the assumption kerT ∩kerS = {0} implies
that R is injective, which is not the case. Since ϕT,S ̸= 0 ( ϕT,S(I ⊕ 0) ̸= 0 ), it
follows from Theorem 2.4 that R(ϕT,S | Cp) is not orthogonal to ker(ϕT,S | Cp).

Corollary 2.5. Let A,B∗ ∈ w∗−H and let C,D ∈ L(H) be two normal operators
such that AC = CA and BD = DB, and assume that Φ ̸= 0 such that A, B, C
and D are nonzero. Then for 1 ≤ p < ∞ with p ̸= 2

∥Φ(X) + T∥p ≥ ∥T∥p,
for all T ∈ ker(Φ | Cp) and for all X ∈ L(H) if and only if kerA ∩ kerC =
kerB∗ ∩ kerD = {0}.

Remark 2.5. The condition kerA∩ kerC = kerB∗ ∩ kerD = {0} in Corollary 2.5
is not necessary for R(Φ | Cp) ⊥ ker(Φ | Cp) if one of the operators A, B, C or
D is zero. It’s enough to take A ∈ w∗ − H a nonzero operator with nontrivial
kernel, C = 0 and D = I to find that Φ = δA,0 ̸= 0. It follows from [3], Lemma
2.4, that (A, 0) has (F, P )Cp , which implies that R(Φ | Cp) ⊥ ker(Φ | Cp) by [4,
Lemma 4].
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Proposition 2.3. Let A,B,C,D ∈ L(H) be nonzero operators such that AC =
CA, BD = DB and Φ ̸= 0.

(1) If BD∗ = D∗B and under any one of the following conditions:
(i) A,B∗, D∗ ∈ w∗ −H, C is normal and D is invertible,
(ii) C,B∗, D∗ ∈ w∗ −H, A is normal and B is invertible.
For 1 ≤ p < ∞ with p ̸= 2, there holds

∥Φ(X) + T∥p ≥ ∥T∥p,
for all T ∈ ker(Φ | Cp) and for all X ∈ L(H) if and only if kerA∩kerC = {0}.

(2) If AC∗ = C∗A and if one of the following conditions hold:
(i) A,B∗, C ∈ w∗ −H, D is normal and C is invertible,
(ii) A,B∗, D∗ ∈ w∗ −H, B is normal and A is invertible.
Then, for 1 ≤ p < ∞ with p ̸= 2, we have

∥Φ(X) + T∥p ≥ ∥T∥p,
for all T ∈ ker(Φ | Cp) and for all X ∈ L(H) if and only if kerB∗ ∩ kerD =
{0}.

Proof. By hypothesis of the case (i), we have T ∈ ker(Φ | Cp) if and only if
T ∈ ker(Φ0 | Cp), where Φ0 : X ∈ L(H) 7→ AXI − CXBD−1. So by Lemma 2.1
and Corollary 2.5, we have kerA ∩ kerC = {0} if and only if

∥Φ0(Y )+T∥p ≥ ∥T∥p for all T ∈ ker(Φ0 | Cp) = ker(Φ | Cp) and for all Y ∈ L(H),

which equivalent to ( by taking Y = XD ):

∥Φ(X) + T∥p ≥ ∥T∥p for all T ∈ ker(Φ | Cp) and for all X ∈ L(H).

We can prove the other cases in the same way. □
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