Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan Volume 50, Number 2, 2024, Pages 274–284 https://doi.org/10.30546/2409-4994.2024.50.2.274

PUTNAM-FUGLEDE THEOREMS AND ORTHOGONALITY OF AN ELEMENTARY OPERATOR IN \mathscr{C}_p CLASSES

MOHAMED MORJANE, SOUKAINA MADANI, MOHAMED ECH-CHAD, AND YOUSSEF BOUHAFSI

Abstract. Given Hilbert space commuting operators $T, S \in \mathcal{L}(H)$, such that T is *w*-hyponormal with ker $T \subseteq \ker T^*$ and S is normal. Let $\phi_{T,S} \in \mathcal{L}(\mathcal{L}(H))$ be the elementary operator defined by $\phi_{T,S}(X) = TXS^* - SXT^*$. In this paper, we show firstly that (1) ker $(\phi_{T,S} \mid \mathscr{C}_p) \subset \ker(\phi_{T^*,S^*} \mid \mathscr{C}_p)$; (2) The range of $\phi_{T,S} \mid \mathscr{C}_p$ is orthogonal to the kernel of $\phi_{T,S} \mid \mathscr{C}_p$ ($\mathcal{R}(\phi_{T,S} \mid \mathscr{C}_p) \perp \ker(\phi_{T,S} \mid \mathscr{C}_p)$) if and only if ker $T \cap \ker S = \{0\}$. Secondly, we will extend these results to the elementary operator $\Phi \in \mathcal{L}(\mathcal{L}(H))$ defined by $\Phi(X) = AXD - CXB$ where [A, C] = [B, D] = 0. Related orthogonality results for the elementary operator Φ are also given.

1. Introduction

Let H be a separable complex Hilbert space and let $\mathcal{L}(H)$ denote the algebra of all bounded linear operators on H into itself. The familiar Putnam-Fuglede theorem [10, Problem 152], asserts that if $T, S \in \mathcal{L}(H)$ are normal operators and TX = XS for some $X \in L(H)$, then $T^*X = XS^*$. The problem of extending the Putnam-Fuglede theorem has been considered by a large number authors, and numerous generalizations of this theorem have appeared over the recent past. The cited references [3, 12, 14, 15] are among various extensions of this celebrated theorem for non-normal classes of operators.

G. Weiss [16] obtained an interesting generalization of the Putnam-Fuglede theorem involving four normal operators. In a way that, if (A, C) and (B, D) are two pairs of commuting normal operators on H, then AXD = CXB implies $A^*XD^* = C^*XB^*$ for all $X \in \mathcal{L}(H)$. This result was generalized by T. Furuta [7] to hyponormal operators with the Hilbert-Schmidt hypothesis on X. In other words, if $A, B, C, D \in \mathcal{L}(H)$, with A, B^*, C and D^* are hyponormal, $CA^* = A^*C$ and $BD^* = D^*B$, then AXD = CXB implies $A^*XD^* = C^*XB^*$ for every X in the Hilbert-Schmidt class.

Let $T \in \mathcal{L}(H)$ be compact, and let $s_1(T) \ge s_2(T) \ge \cdots \ge 0$ denote the singular values of T arranged in their decreasing order. The operator T is said to belong

²⁰¹⁰ Mathematics Subject Classification. 47B47, 47A30, 47B15, 47B20, 47A63.

Key words and phrases. Elementary operator, Putnam-Fuglede property, Range-kernel orthogonality, Log-hyponormal, w-hyponormal.

to the Schatten *p*-class \mathscr{C}_p if

$$||T||_p = \begin{cases} \left(\sum_{j=1}^{\infty} s_j(T)^p\right)^{1/p} = (\operatorname{tr}(T)^p)^{1/p} < \infty, & 1 \le p < \infty, \\ s_1(T), & p = \infty, \end{cases}$$

where 'tr' denotes the trace functional. Given subspaces M and N of a Banach space V with norm $\|.\|$, then M is said to be orthogonal to N in the sense of Birkhof-James, denoted $M \perp N$, if $\|m + n\| \ge \|n\|$ for all $m \in M$ and $n \in N$. The range-kernel orthogonality of elementary operators has been studied by a number of authors over recent decades. For $A, B \in \mathcal{L}(H)$, the generalized derivation $\delta_{A,B} \in \mathcal{L}(\mathcal{L}(H))$ is defined by $\delta_{A,B}(X) = AX - XB$. In [2] Bouali and Cherki proved that if A and B are normal, then the range $\mathcal{R}(\delta_{A,B} \mid \mathscr{C}_p)$ of $\delta_{A,B}$ is orthogonal to its kernel ker $(\delta_{A,B} \mid \mathscr{C}_p)$. These results have been extended to a diversity of elementary operators $\Phi \in \mathcal{L}(\mathcal{L}(H))$, where $\Phi(X) = AXD - CXB$, for a variety of choices of tuples of commuting operators (A, C) and (B, D) (see [5, 9, 11, 13] for further references). In particular, A. Turnsěk [13] proved that if A, C respectively B, D are nonzero normal commuting operators, then $\mathcal{R}(\Phi \mid \mathscr{C}_p) \perp \text{ker}(\Phi \mid \mathscr{C}_p)$ if and only if

$$\ker A \cap \ker C = \ker B^* \cap \ker D^* = \{0\}.$$

An operator T is called w-hyponormal if $|\tilde{T}| \geq |T| \geq \left| (\tilde{T})^* \right|$ where $|T| = (T^*T)^{\frac{1}{2}}$ and $\tilde{T} = |T|^{1/2}U|T|^{1/2}$, is the Aluthge transform of T. We say that T is w_* -hyponormal and we note $T \in w_* - H$, if T is w-hyponormal and $\ker(T) \subseteq \ker(T^*)$. In this paper we consider the elementary operator $\phi_{T,S}(X) = TXS^* - SXT^*$ where $T \in w_* - H$ and S is normal operator with TS = ST. It will be shown the inclusion $\ker(\phi_{T,S} \mid \mathscr{C}_p) \subset \ker(\phi_{T^*,S^*} \mid \mathscr{C}_p)$. This implies that if $\Phi \in \mathcal{L}(\mathcal{L}(H))$ is the elementary operator $\Phi(X) = AXD - CXB$, where $A, B^* \in w_* - H, C$ and D are normal such that AC = CA and BD = DB, then $\ker(\Phi \mid \mathscr{C}_p) \subset \ker(\Phi_* \mid \mathscr{C}_p)$, where $\Phi_* : X \in \mathcal{L}(H) \mapsto A^*XD^* - C^*XB^*$. Which gives both an extension of the Putnam-Fuglede property and the Weiss's theorem. Another purpose of this paper is to investigate the range-kernel orthogonality of the elementary operators $\phi_{T,S}$ and Φ in \mathscr{C}_p classes. We conclude this section with some notations.

For X a linear operator acting on Banach space E, we denote by X^* , ker(X), ker X^{\perp} , R(X) and $X|_M$ respectively the adjoint, the kernel, the orthogonal complement of the kernel, the range of X and the restriction of X to an invariant subspace M. For g and ω two vectors in H, we define $g \otimes \omega \in \mathcal{L}(H)$ as follows:

$$g \otimes \omega(x) = \langle x, \omega \rangle g$$
 for all $x \in H$.

Recall that an operator $T \in \mathcal{L}(H)$ is said to be hyponormal if $T^*T \geq TT^*$. Hyponormal operators have been studied by many authors and it is known that hyponormal operators have many interesting properties similar to those of normal operators [8]. An operator T is said to be p-hyponormal if $(T^*T)^p \geq (TT^*)^p$ for $p \in]0,1]$ and an operator T is said to be log-hyponormal if T is invertible and $\log |T| \geq \log |T^*|$. p-hyponormal and log-hyponormal operators are defined as extension of hyponormal operator. The classes of log- and w-hyponormal operators were introduced and their properties were studied in [1]. In particular, it was shown in [1] that the class of w-hyponormal operators contains both pand log-hyponormal operators. Moreover, it is easy to see that w-hyponormal operators T are paranormal (i.e., $||Tx||^2 \leq ||T^2x||$ for all unit vectors $x \in H$). The w-hyponormal operators have some interesting properties, amongst them that the restriction of a w-hyponormal operator to an invariant subspace is again a w-hyponormal operator, the inverse of an invertible w-hyponormal operator is again w-hyponormal.

2. Main results

Lemma 2.1. [3] If $A, B \in w_* - H$ are such that $[A, B] = [A^*, B] = 0$ and B is invertible, then $AB^{-1} \in w_* - H$.

Theorem 2.1. Let $T \in w_* - H$ and $S \in \mathcal{L}(H)$ is normal such that TS = ST. If T or S is injective, then for $1 \leq p < \infty$, the following assertions holds:

(i) $\ker(\phi_{T,S} \mid \mathscr{C}_p) \subset \ker(\phi_{T^*,S^*} \mid \mathscr{C}_p).$

(ii) For all $X, Y \in \mathcal{L}(H)$ such that $Y \in \ker(\phi_{T,S} \mid \mathscr{C}_p)$ we have

$$\|\phi_{T,S}(X) + Y\|_{p} \ge \|Y\|_{p}$$

Proof. Firstly, assume that S is injective and for a natural number n, let $\Delta_n = \{\lambda \in \mathbb{C} : |\lambda| \leq 1/n\}$ and let $E_S(\Delta_n)$ denote the corresponding spectral projection. Set $I - E_S(\Delta_n) = P_n$; then $P_n \to I$ in the strong topology. Since TS = ST, the Fuglede's Theorem implies $TS^* = S^*T$ and so $R(P_n)$ reduces both T and S. Hence

$$T = T_{1,n} \oplus T_{2,n}$$
 and $S = S_{1,n} \oplus S_{2,n}$ on $H_n = H = \ker(P_n) \oplus R(P_n)$

where $T_{i,n}$ are w_* -hyponormal (i = 1, 2), $S_{1,n}$ is normal and $S_{2,n}$ is invertible normal. Now and for $Y \in \ker(\phi_{T,S} | \mathscr{C}_p)$, let $Y_n = P_n Y P_n$, hence $Y_n \longrightarrow Y$ weakly (even, strongly). Also, if we set $R_n = T_{2,n} S_{2,n}^{-1}$, then we have

$$P_n \phi_{T,S}(Y) P_n = P_n (TYS^* - SYT^*) P_n$$

= $T_{2,n} (P_n Y P_n) S_{2,n}^* - S_{2,n} (P_n Y P_n) T_{2,n}^*$
= $T_{2,n} Y_n S_{2,n}^* - S_{2,n} Y_n T_{2,n}^*$
= $S_{2,n} (R_n Y_n - Y_n R_n^*) S_{2,n}^*$,

which means that $Y_n \in \ker(\delta_{R_n,R_n^*})$. Since R_n is w_* -hyponormal by Lemma 2.1, then [3, Lemma 2.4] implies that $Y_n \in \ker(\delta_{R_n^*,R_n})$. Hence

$$P_n \phi_{T^*, S^*}(Y) P_n = P_n (T^*YS - S^*YT) P_n$$

= $S^*_{2,n} (R^*_n Y_n - Y_n R_n) S_{2,n}$
= 0,

and as result $Y \in \ker(\phi_{T^*,S^*} \mid \mathscr{C}_p)$. Secondly, it results from [2], Theorem 2.2, that

$$\left\|\delta_{R_n,R_n^*}(Z_n)+Y_n\right\|_p \ge \|Y_n\|_p$$
 for all $Z_n \in \mathcal{L}(R(P_n))$.

Thus for $Z_n = S_{2,n} X_n S_{2,n}^*$, we would have

$$\left\| T_{2,n} X_n S_{2,n}^* - S_{2,n} X_n T_{2,n}^* + Y_n \right\|_p \ge \left\| Y_n \right\|_p,$$

for all $X_n = P_n X P_n \in \mathcal{L}(R(P_n))$. It follows that $\|\phi_{T,S}(X) + Y\|_p \ge \|P_n(\phi_{T,S}(X) + Y)P_n\|_p = \|T_{2,n}X_nS_{2,n}^* - S_{2,n}X_nT_{2,n}^* + Y_n\|_p \ge \|Y_n\|_p$. Therefore, since $\|Y_n\|_p \longrightarrow \|Y\|_p$,

 $\|\phi_{T,S}(X) + Y\|_p \ge \|Y\|_p$ for all $X \in \mathcal{L}(H)$ and $Y \in \ker(\phi_{T,S} \mid \mathscr{C}_p)$.

Now, suppose that T is injective and let $Y \in \ker(\phi_{T,S} \mid \mathscr{C}_p)$. So, we can write T, S and Y on $H_0 = H = (\ker(S))^{\perp} \oplus \ker(S)$ as

$$T = N \oplus R, S = S_1 \oplus 0, \text{ and } Y = \begin{pmatrix} Y_1 & Y_2 \\ Y_3 & Y_4 \end{pmatrix},$$

with $NY_1S_1^* = S_1Y_1N^*$, i.e $Y_1 \in \ker(\phi_{N,S_1} \mid \mathscr{C}_p)$ and $S_1Y_2R^* = RY_3S_1^* = 0$, hence $Y_2 = Y_3 = 0$. As result, since $N \in w_* - H$ and S_1 is injective, the first case implies that $Y_1 \in \ker(\phi_{N^*,S_1^*} \mid \mathscr{C}_p)$, which equivalent to $Y \in \ker(\phi_{T^*,S^*} \mid \mathscr{C}_p)$. More things, let $X = \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix} \in \mathcal{L}(H_0)$, then we have:

$$\|\phi_{T,S}(X) + Y\|_p = \left\| \begin{pmatrix} \phi_{N,S_1}(X_1) + Y_1 & * \\ * & Y_4 \end{pmatrix} \right\|_p \ge \left\| \begin{pmatrix} \phi_{N,S_1}(X_1) + Y_1 & 0 \\ 0 & Y_4 \end{pmatrix} \right\|_p$$

since the norm of an operator matrix always dominates the norm of its diagonal part. Also, we can deduce from the first case that:

$$\|\phi_{T,S}(X) + Y\|_p \ge \left(\|\phi_{N,S_1}(X_1) + Y_1\|_p^p + \|Y_4\|_p^p\right)^{\frac{1}{p}} \ge \left(\|Y_1\|_p^p + \|Y_4\|_p^p\right)^{\frac{1}{p}} = \|Y\|_p.$$

Remark 2.1. It's easy to check that Theorem 2.1 remains valid for the following assumptions: T is normal and S is w_* -hyponormal, by using the fact that $\phi_{T,S} = -\phi_{S,T}$.

We consider the elementary operator $\Phi \in \mathcal{L}(\mathcal{L}(H))$ defined by $\Phi(X) = AXD - CXB$, with $\Phi_*(X) = A^*XD^* - C^*XB^*$. We therefore deduce that:

Corollary 2.1. Let $A, B, C, D \in \mathcal{L}(H)$ such that AC = CA and BD = DB. If one of the following conditions hold:

(i) $A, B^* \in w_* - H$ are injective, C and D are normal operators,

(ii) $A, B^* \in w_* - H, C$ and D are normal injective operators,

(iii) $C, D^* \in w_* - H$ are injective, A and B are normal operators,

(iv) $C, D^* \in w_* - H$, A and B are normal injective operators.

Then for $1 \leq p < \infty$, $\ker(\Phi \mid \mathscr{C}_p) \subset \ker(\Phi_* \mid \mathscr{C}_p)$ and we have

$$\|\Phi(X) + T\|_{p} \ge \|T\|_{p},$$

for all $X, T \in \mathcal{L}(H)$ such that $T \in \ker(\Phi \mid \mathscr{C}_p)$.

Proof. Let $T \in \ker(\Phi \mid \mathscr{C}_p)$ and put $\hat{T} = \begin{pmatrix} B^* & 0 \\ 0 & A \end{pmatrix}$, $S = \begin{pmatrix} D^* & 0 \\ 0 & C \end{pmatrix}$ and $Y = \begin{pmatrix} 0 & 0 \\ T & 0 \end{pmatrix}$ be defined on $H \oplus H$. This gives us $\hat{T}S = S\hat{T}$ and $Y \in \ker(\phi_{\hat{T}^*,S^*} \mid \mathscr{C}_p)$ which \mathscr{C}_p). By our assumptions and Theorem 2.1, we get $Y \in \ker(\phi_{\hat{T}^*,S^*} \mid \mathscr{C}_p)$ which

equivalent to $T \in \ker(\Phi_* \mid \mathscr{C}_p)$, furthermore, for all $\hat{X} = \begin{pmatrix} 0 & 0 \\ X & 0 \end{pmatrix} \in \mathcal{L}(H \oplus H)$, we have

$$\left\|\phi_{\hat{T},S}(\hat{X})+Y\right\|_p = \left\| \left(\begin{array}{cc} 0 & 0 \\ AXD-CXB+T & 0 \end{array} \right) \right\|_p \ge \|Y\|_p \,.$$

 \square

Therefore, we obtain the desired result.

Remark 2.2. If we take C = D = I, we can see that the preceding corollary generalizes Lemma 2.4. of [3] for $d_{A,B} = \delta_{A,B} \mid \mathscr{C}_p$. In addition, it extends Bouali and Cherki's inequality [2] for w_* -hyponormal operators.

Theorem 2.2. Let $T \in w_* - H$ and $S \in \mathcal{L}(H)$ be normal operator such that TS = ST. If $TXS^* = SXT^*$ for some operator $X \in \mathscr{C}_p$, then we have $T^*XS =$ S^*XT .

Proof. Since TS = ST and S is normal then by Fuglede's Theorem $T^*S = ST^*$. It follows that $(\ker S)^{\perp}$ reduce T. Therefore

$$T = N \oplus R$$
 on $H_0 = H = (\ker(S))^{\perp} \oplus \ker(S)$.

We can write S and X on H_0 as:

$$S = \left(\begin{array}{cc} S_1 & 0\\ 0 & 0 \end{array}\right) \text{ and } X = \left(\begin{array}{cc} X_1 & X_2\\ X_3 & X_4 \end{array}\right).$$

Since TS = ST we have $NS_1 = S_1N$. Thus if $TXS^* = SXT^*$ then $NX_1S_1^* =$ $S_1X_1N^*$, with $N \in w_* - H$ and S_1 is normal injective. So by Theorem 2.1, we get $N^*X_1S_1 = S_1^*X_1N$. By the same way, we obtain that $S_1X_2R^* = 0$ and $RX_3S_1^* = 0$. Thus, by the Putnam-Fuglede theorem, we have

$$S_1(X_2R^*) = (X_2R^*) \cdot 0 \text{ and } 0 \cdot (RX_3) = (RX_3)S_1^* \implies S_1^*(X_2R^*) = (X_2R^*) \cdot 0^* \text{ and } 0^* \cdot (RX_3) = (RX_3)S_1.$$

We have also $R \in w_* - H$, then [3, Lemma 2.4] ensures that:

$$0 \cdot (S_1^* X_2) = (S_1^* X_2) R^* \text{ and } R(X_3 S_1) = (X_3 S_1) \cdot 0 \implies 0^* \cdot (S_1^* X_2) = (S_1^* X_2) R \text{ and } R^*(X_3 S_1) = (X_3 S_1) \cdot 0^*.$$

Hence $S_1^* X_2 R = R^* X_3 S_1 = 0$ and as a result $T^* X S = S^* X T.$

Hence $S_1^*X_2R = R^*X_3S_1 = 0$ and as a result $T^*XS = S^*XT$.

Corollary 2.2. Let $A, B, C, D \in \mathcal{L}(H)$ such that AC = CA and BD = DB. Then, AXD = CXB and $X \in \mathscr{C}_p$ implies $A^*XD^* = C^*XB^*$ in each of the following cases:

(i) $A, B^* \in w_* - H, C \text{ and } D \text{ are normal},$

(ii) $C, D^* \in w_* - H$ and A and B are normal.

Remark 2.3. Our results generalize the Weiss's Theorem [16], as well as the Putnam-Fuglede property $(F, P)_{\mathscr{C}_p}$ for w_* -hyponormal operators by taking C =D = I. Also, as a consequence of Corollary 2.2 and Duggal's result [6], We'll get:

Corollary 2.3. Let $A, B, C, D \in \mathcal{L}(H)$ such that AC = CA and BD = DB. Then,

$$\|\Phi(X) + T\|_{2}^{2} = \|\Phi(X)\|_{2}^{2} + \|T\|_{2}^{2} \text{ for all } X \in \mathcal{L}(H) \text{ and } T \in \ker(\Phi \mid \mathscr{C}_{2}).$$

in each of the following cases:

- (i) $A, B^* \in w_* H, C \text{ and } D \text{ are normal},$
- (ii) $C, D^* \in w_* H$ and A and B are normal.

Proposition 2.1. Let $A, B, C, D \in \mathcal{L}(H)$ such that AC = CA and BD = DB. If one of the following assertions is verified

- (i) $A, B^*, D^* \in w_* H, C$ is normal, D is invertible and $BD^* = D^*B$,
- (ii) $A, B^*, C \in w_* H, D$ is normal, C is invertible and $AC^* = C^*A$,
- (iii) $C, B^*, D^* \in w_* H$, A is normal, B is invertible and $BD^* = D^*B$,
- (iv) $A, B^*, D^* \in w_* H, B$ is normal, A is invertible and $AC^* = C^*A$. Then we have the implication

$$AXD = CXB \implies A^*XD^* = C^*XB^*$$
 for all $X \in \mathscr{C}_p$

Proof. It is an immediate consequence of Corollary 2.2 and Lemma 2.1. \Box

Proposition 2.2. Let $T, S \in \mathcal{L}(H)$. If $T, S \in w_* - H$ are doubly commuting operators such that $|T|S = S|T^*|$. Then, $TXS^* = SXT^*$ implies $T^*XS = S^*XT$ for all $X \in \mathscr{C}_p$.

Proof. By hypothesis, we have $TS - ST = T^*S - ST^* = 0$, It follows that $(\ker S)^{\perp}$ reduce T and $T|_{(\ker S)^{\perp}}$ is normal. This means

$$T = N \oplus R$$
 on $H_0 = H = (\ker(S))^{\perp} \oplus \ker(S)$.

Since ker $S \subseteq \ker S^*$, ker S reduces S. Hence, we can write S and X on H_0 as follows:

$$S = \begin{pmatrix} S_1 & 0\\ 0 & 0 \end{pmatrix} \text{ and } X = \begin{pmatrix} X_1 & X_2\\ X_3 & X_4 \end{pmatrix}.$$

From TS = ST we have $NS_1 = S_1N$. Thus if $TXS^* = SXT^*$ then $NX_1S_1^* = S_1X_1N^*$ with $S_1 \in w_* - H$ and N is normal. So by Theorem 2.2 we get $N^*X_1S_1 = S_1^*X_1N$. Also, we find that $S_1X_2R^* = 0$ and $RX_3S_1^* = 0$ with $R \in w_* - H$. So by using [3], Lemma 2.4, the rest of the proof is similar to that of theorem 2.2. \Box

Example 2.1. Let $T \in \mathcal{L}(H)$ be *p*-hyponormal such that $T = T_1 \oplus T_2$ on the space $H = H_1 \oplus H_2$, where T_1 is the normal part of T and T_2 is the pure part of T; i.e., T_2 is *p*-hyponormal and has no invariant subspace \mathcal{M} such that $T_2|_{\mathcal{M}}$ is normal. If we define $S = N \oplus 0$ on H, where N is a w_* -hyponormal operator on H_1 which commute with T_1 (as example N = I). A simple calculation shows that TS = ST and $T^*S = ST^*$ using Fuglede's theorem. Also, $|T|S = S|T^*|$ since $|T^*| = |T_1| \oplus |T_2^*|$. The operators T and S satisfy the hypothesis of Proposition 2.2, hence:

$$TXS^* = SXT^* \implies T^*XS = S^*XT$$
 for all $X \in \mathscr{C}_p$.

Based on Theorem 2.1, we then give next a generalization of this Theorem, replacing the condition " T or S is injective " by " ker $T \cap \ker S = \{0\}$ ".

Theorem 2.3. Let $T \in w_* - H$ and $S \in \mathcal{L}(H)$ is normal such that TS = STand suppose that ker $T \cap \ker S = \{0\}$. Then for $1 \leq p < \infty$, ker $(\phi_{T,S} \mid \mathscr{C}_p) \subset$ ker $(\phi_{T^*,S^*} \mid \mathscr{C}_p)$, and we have

$$\|\phi_{T,S}(X) + Y\|_{p} \ge \|Y\|_{p},$$

for every $Y \in \ker(\phi_{T,S} \mid \mathscr{C}_p)$ and for all $X \in \mathcal{L}(H)$.

Proof. If T or S is injective, we obtain the desired result by using Theorem 2.1. So let us assume that neither T nor S is injective. With respect to the decomposition $H_0 = H = \ker S^{\perp} \oplus \ker S$, we get

$$T = \left(\begin{array}{cc} N & 0\\ 0 & R \end{array}\right), \text{ and } S = \left(\begin{array}{cc} S_1 & 0\\ 0 & 0 \end{array}\right)$$

where $R = T|_{\ker S}$ is injective by hypothesis. Now, we have two cases:

 $N = 0: \text{ In this case and if } Y \in \ker(\phi_{T,S} \mid \mathscr{C}_p) \text{ has the form } Y = \begin{pmatrix} Y_1 & Y_2 \\ Y_3 & Y_4 \end{pmatrix}$ on H_0 , we obtain $S_1Y_2R^* = RY_3S_1^* = 0$, which means that $Y_2 = Y_3 = 0$. Thus, $\phi_{T,S}(Y) = 0 = \phi_{T^*,S^*}(Y) \text{ and for } X = \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix} \in \mathcal{L}(H_0),$

$$\|\phi_{T,S}(X) + Y\|_p = \left\| \begin{pmatrix} Y_1 & -S_1X_1R^* \\ RX_3S_1^* & Y_4 \end{pmatrix} \right\|_p \ge \left\| \begin{pmatrix} Y_1 & 0 \\ 0 & Y_4 \end{pmatrix} \right\|_p = \|Y\|_p$$

since the norm of an operator matrix always dominates the norm of its diagonal part.

 $N \neq 0$: Since $T|_{\ker S}$ is injective and $N = T|_{\ker S^{\perp}}$ is not injective. Also, of the fact that T is paranormal, $\ker S^{\perp} \ominus \ker N$ is invariant subspace of T. With respect to the decomposition $H_1 = H = (\ker S^{\perp} \ominus \ker N) \oplus \ker N \oplus \ker S$, we find that

$$T = \begin{pmatrix} T_1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & T_2 \end{pmatrix} \text{ and } S = \begin{pmatrix} S_1 & 0 & 0\\ 0 & S_2 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

where operators T_i and S_i , $1 \le i \le 2$, are injective with $T_1 \in w_* - H$. From the hypothesis $TYS^* = SYT^*$, we obtain

$$Y = \begin{pmatrix} Y_{11} & 0 & 0 \\ 0 & Y_{22} & 0 \\ 0 & 0 & Y_{33} \end{pmatrix}, \text{ and } T_1 Y_{11} S_1^* = S_1 Y_{11} T_1^*, \text{ i.e } Y_{11} \in \ker(\phi_{T_1, S_1} \mid \mathscr{C}_p).$$

Then Theorem 2.1 implies that $Y_{11} \in \ker(\phi_{T_1^*,S_1^*} \mid \mathscr{C}_p)$ which equivalent to $Y \in \ker(\phi_{T^*,S^*} \mid \mathscr{C}_p)$. Furthermore and for $X = [X_{ij}]_{i,j=1}^3 \in \mathcal{L}(H_1)$,

$$\|\phi_{T,S}(X) + Y\|_{p} = \left\| \begin{pmatrix} \phi_{T_{1},S_{1}}(X_{11}) + Y_{11} & * & * \\ & * & Y_{22} & * \\ & * & * & Y_{33} \end{pmatrix} \right\|_{p}$$

$$\geq \|(\phi_{T_{1},S_{1}}(X_{11}) + Y_{11}) \oplus Y_{22} \oplus Y_{33}\|_{p}$$

since the norm of an operator matrix always dominates the norm of its diagonal part. From Theorem 2.1, we can infer that

$$\begin{aligned} \|\phi_{T,S}(X) + Y\|_p &\geq \left(\|\phi_{T_1,S_1}(X_{11}) + Y_{11}\|_p^p + \|Y_{22}\|_p^p + \|Y_{33}\|_p^p\right)^{\frac{1}{p}} \\ &\geq \left(\|Y_{11}\|_p^p + \|Y_{22}\|_p^p + \|Y_{33}\|_p^p\right)^{\frac{1}{p}} \\ &= \|Y\|_p. \end{aligned}$$

Corollary 2.4. Let $A, B^* \in w_* - H$ and let $C, D \in \mathcal{L}(H)$ be two normal operators, such that AC = CA and BD = DB. Suppose that ker $A \cap \ker C = \ker B^* \cap \ker D = \{0\}$. Then for $1 \leq p < \infty$, ker $(\Phi \mid \mathscr{C}_p) \subset \ker(\Phi_* \mid \mathscr{C}_p)$, and we have

$$\|\Phi(X) + T\|_p \ge \|T\|_p,$$

for all $T \in \ker(\Phi \mid \mathscr{C}_p)$ and for all $X \in \mathcal{L}(H)$.

Theorem 2.4. Let $T \in w_* - H$ and S be a normal operator such that TS = STand $\phi_{T,S} \neq 0$. Then for $1 \leq p < \infty$ with $p \neq 2$

$$\|\phi_{T,S}(X) + Y\|_p \ge \|Y\|_p$$

holds for every $Y \in \ker(\phi_{T,S} \mid \mathscr{C}_p)$ and for all $X \in \mathcal{L}(H)$ if and only if $\ker T \cap \ker S = \{0\}$.

Proof. By Theorem 2.3, it suffices to show that, ker $T \cap \ker S = \{0\}$ is a necessary condition for $\mathcal{R}(\phi_{T,S} \mid \mathscr{C}_p) \perp \ker(\phi_{T,S} \mid \mathscr{C}_p)$, when T and S are not injective. Suppose that ker $T \cap \ker S \neq \{0\}$ and decompose $H_0 = H = \ker S^{\perp} \oplus \ker S$, then

$$T = \begin{pmatrix} N & 0 \\ 0 & R \end{pmatrix} \text{ and } S = \begin{pmatrix} S_1 & 0 \\ 0 & 0 \end{pmatrix} \text{ on } H_0$$

First, assume that ker $T \neq \ker S$. Without loss of generality, we can also assume that ker $S \nsubseteq \ker T$. Then $R = T|_{\ker S}$ is a nonzero operator with nontrivial kernel. With respect to the decomposition

$$H_1 = H = \ker S^{\perp} \oplus (\ker S \ominus \ker R) \oplus \ker R$$

one obtains $T = T_1 \oplus T_2 \oplus 0$ and $S = S_1 \oplus 0 \oplus 0$, where T_2 and S_1 are injective. From the hypothesis $TYS^* = SYT^*$ we get

$$Y = \begin{pmatrix} Y_{11} & 0 & Y_{13} \\ 0 & Y_{22} & Y_{23} \\ Y_{31} & Y_{32} & Y_{33} \end{pmatrix} \text{ and } T_1 Y_{11} S_1^* = S_1 Y_{11} T_1^*,$$

so that the other Y entries are arbitrary. Let e be a nonzero vector of H. Choose

$$X = \begin{pmatrix} 0 & e \otimes ie & 0 \\ e \otimes ie & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ and } Y = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & Y_{23} \\ 0 & Y_{32} & Y_{33} \end{pmatrix}.$$

Then

$$\phi_{T,S}(X) + Y = \begin{pmatrix} 0 & -S_1 e \otimes T_2 i e & 0 \\ T_2 e \otimes S_1 i e & 0 & Y_{23} \\ 0 & Y_{32} & Y_{33} \end{pmatrix}$$

Since $C = \begin{pmatrix} 0 & -S_1 e \otimes T_2 i e \\ T_2 e \otimes S_1 i e & 0 \end{pmatrix}$ is a nonzero $(S_1 \text{ and } T_2 \text{ are injective})$ self-adjoint operator of finite rank, we can use [13], Lemma 2.4, for $p \neq 1$ to find operators Y_{23} , Y_{32} and Y_{33} such that

$$\|\phi_{T,S}(X) + Y\|_p < \left\| \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & Y_{23} \\ 0 & Y_{32} & Y_{33} \end{pmatrix} \right\|_p = \|Y\|_p$$

For p = 1, [13, lemma 2.4] can be used again, because if the operator C is of rank two and has eigenvalues λ_1 , λ_2 with $|\lambda_1| = |\lambda_2|$, then a simple calculation shows that $|\lambda_1| = |\lambda_2|$ if and only if $||T_2e|| ||S_1e|| = 1$ and $\langle T_2e, S_1e \rangle = 0$ for all $e \in H$. Hence $S_1^*T_2 = 0$ which means that $S_1 = 0$ since T_2 is injective. We are therefore faced with a contradiction with our hypothesis that $\phi_{T,S} \neq 0$.

In the case ker $T = \ker S$, it's clear that $R = T|_{\ker S} = 0$ and $N = T|_{\ker S^{\perp}}$ is injective. From $TYS^* = SYT^*$, it follows that

$$Y = \begin{pmatrix} Y_1 & Y_2 \\ Y_3 & Y_4 \end{pmatrix}$$
 on H_0 with $NY_1S_1^* = S_1Y_1N^*$,

such that the other entries of Y are arbitrary. Let us choose $Y_1 = 0$ and $X = \begin{pmatrix} e \otimes ie & 0 \\ 0 & 0 \end{pmatrix}$. Then

$$\phi_{T,S}(X) + Y = \left(\begin{array}{cc} Ne \otimes S_1 ie - S_1 e \otimes Nie & Y_2 \\ Y_3 & Y_4 \end{array}\right).$$

If $D = Ne \otimes S_1 ie - S_1 e \otimes Nie = 0$ for all $e \in H$, then, since N and S_1 are injective, we would have $S_1 = cN$ with $c \in \mathbb{R}$. This would imply contrary to our assumption, that $\phi_{T,S} = 0$. Thus D becomes a nonzero self-adjoint operator of finite rank. We can also end the proof in a similar way to the first case. \Box

- Remark 2.4. (1) The condition $\phi_{T,S} \neq 0$ in Theorem 2.4 is essential. It's enough to take T = 0 and S is a non-injective operator, to see that $\mathcal{R}(\phi_{T,S} \mid \mathscr{C}_p) \perp \ker(\phi_{T,S} \mid \mathscr{C}_p)$ cannot imply that ker $T \cap \ker S = \{0\}$ when $\phi_{T,S} = 0$.
- (2) Bouali and Cherki prove in [2] that $\ker(\delta_{A,B} \mid \mathscr{C}_p) \subset \ker(\delta_{A^*,B^*} \mid \mathscr{C}_p)$ implies $\mathcal{R}(\delta_{A,B} \mid \mathscr{C}_p) \perp \ker(\delta_{A,B} \mid \mathscr{C}_p)$. But the following example proves that $\ker(\phi_{T,S} \mid \mathscr{C}_p) \subset \ker(\phi_{T^*,S^*} \mid \mathscr{C}_p)$ cannot imply that $\mathcal{R}(\phi_{T,S} \mid \mathscr{C}_p) \perp \ker(\phi_{T,S} \mid \mathscr{C}_p)$ for $1 \leq p < \infty$ with $p \neq 2$.

Example 2.2. Let $H_0 = H \oplus H$ and define the operators:

$$T = \left(\begin{array}{cc} I & 0\\ 0 & R \end{array}\right) \text{ and } S = \left(\begin{array}{cc} iI & 0\\ 0 & 0 \end{array}\right),$$

where R is w_* -hyponormal non injective operator on H (as example R = 0). Then we have $T \in w_* - H$, S is normal and TS = ST. Hence Theorem 2.2 ensures that $\ker(\phi_{T,S} | \mathscr{C}_p) \subset \ker(\phi_{T^*,S^*} | \mathscr{C}_p)$. But the assumption $\ker T \cap \ker S = \{0\}$ implies that R is injective, which is not the case. Since $\phi_{T,S} \neq 0$ ($\phi_{T,S}(I \oplus 0) \neq 0$), it follows from Theorem 2.4 that $\mathcal{R}(\phi_{T,S} | \mathscr{C}_p)$ is not orthogonal to $\ker(\phi_{T,S} | \mathscr{C}_p)$.

Corollary 2.5. Let $A, B^* \in w_* - H$ and let $C, D \in \mathcal{L}(H)$ be two normal operators such that AC = CA and BD = DB, and assume that $\Phi \neq 0$ such that A, B, C and D are nonzero. Then for $1 \leq p < \infty$ with $p \neq 2$

$$\|\Phi(X) + T\|_p \ge \|T\|_p,$$

for all $T \in \ker(\Phi \mid \mathscr{C}_p)$ and for all $X \in \mathcal{L}(H)$ if and only if $\ker A \cap \ker C = \ker B^* \cap \ker D = \{0\}.$

Remark 2.5. The condition ker $A \cap \ker C = \ker B^* \cap \ker D = \{0\}$ in Corollary 2.5 is not necessary for $\mathcal{R}(\Phi \mid \mathscr{C}_p) \perp \ker(\Phi \mid \mathscr{C}_p)$ if one of the operators A, B, C or D is zero. It's enough to take $A \in w_* - H$ a nonzero operator with nontrivial kernel, C = 0 and D = I to find that $\Phi = \delta_{A,0} \neq 0$. It follows from [3], Lemma 2.4, that (A, 0) has $(F, P)_{\mathscr{C}_p}$, which implies that $\mathcal{R}(\Phi \mid \mathscr{C}_p) \perp \ker(\Phi \mid \mathscr{C}_p)$ by [4, Lemma 4].

Proposition 2.3. Let $A, B, C, D \in \mathcal{L}(H)$ be nonzero operators such that AC = CA, BD = DB and $\Phi \neq 0$.

(1) If $BD^* = D^*B$ and under any one of the following conditions: (i) $A, B^*, D^* \in w_* - H, C$ is normal and D is invertible, (ii) $C, B^*, D^* \in w_* - H, A$ is normal and B is invertible. For $1 \le p < \infty$ with $p \ne 2$, there holds

$$\|\Phi(X) + T\|_{p} \ge \|T\|_{p}$$

for all $T \in \ker(\Phi \mid \mathscr{C}_p)$ and for all $X \in \mathcal{L}(H)$ if and only if $\ker A \cap \ker C = \{0\}$. (2) If $AC^* = C^*A$ and if one of the following conditions hold:

(i) $A, B^*, C \in w_* - H$, D is normal and C is invertible, (ii) $A, B^*, D^* \in w_* - H$, B is normal and A is invertible. Then, for $1 \le p < \infty$ with $p \ne 2$, we have

$$\|\Phi(X) + T\|_{p} \ge \|T\|_{p}$$

for all $T \in \ker(\Phi \mid \mathscr{C}_p)$ and for all $X \in \mathcal{L}(H)$ if and only if $\ker B^* \cap \ker D = \{0\}$.

Proof. By hypothesis of the case (i), we have $T \in \ker(\Phi \mid \mathscr{C}_p)$ if and only if $T \in \ker(\Phi_0 \mid \mathscr{C}_p)$, where $\Phi_0 : X \in \mathcal{L}(H) \mapsto AXI - CXBD^{-1}$. So by Lemma 2.1 and Corollary 2.5, we have $\ker A \cap \ker C = \{0\}$ if and only if

 $\|\Phi_0(Y)+T\|_p \ge \|T\|_p$ for all $T \in \ker(\Phi_0 \mid \mathscr{C}_p) = \ker(\Phi \mid \mathscr{C}_p)$ and for all $Y \in \mathcal{L}(H)$, which equivalent to (by taking Y = XD):

 $\|\Phi(X) + T\|_p \ge \|T\|_p$ for all $T \in \ker(\Phi \mid \mathscr{C}_p)$ and for all $X \in \mathcal{L}(H)$.

We can prove the other cases in the same way.

References

- A. Aluthge and D. Wang, w-Hyponormal operators. Integr. Equ. Oper. Theory, 36 (2000), 1–10.
- [2] S. Bouali, S. Cherki, Approximation by generalized commutators, Acta Sci. Math.,
 63 (1997), 273–278.
- [3] M. Cho, D.S. Djordjevic, B.P. Duggal, T. Yamazaki, On an elementary operator with w-hyponormal operator entries, *Linear Algebra Appl.*, **433** (11-12) (2010), 2070–2079.
- [4] B.P. Duggal, Range kernel orthogonality of derivations, *Linear Algebra Appl.* **304**(2000), 103–108.
- [5] B.P. Duggal, R.E. Harte, Range-kernel orthogonality and range closure of an elementary operator, *Monatsh. Math.* **143** (2004), 179–187.
- [6] B.P. Duggal, Range-kernel orthogonality of the elementary operator $X \rightarrow \sum_{i=1}^{n} A_i X B_i X$, Linear Algebra Appl. **337** (2001) 79–86.
- [7] B.P. Duggal, Subspace gaps and range-kernel orthogonality of an elementary operator, *Linear Algebra Appl.* **383** (2004), 93–106.
- [8] T. Furuta, M. Ito, T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, *Sci. math.* 1 (1998), 389–403.
- [9] T. Furuta, A Hilbert-Schmidt norm inequality associated with the Fuglede-Putnam theorem. *Bull. Aust. Math. Soc.* **25(2)** (1982), 177–185.
- [10] P.R. Halmos, A Hilbert space problem book, Springer-Verlag, 1967.
- [11] D. Kečkić, Orthogonality of the range and the kernel of some elementary operators, Proc. Amer. Math. Soc. 128 (2000), 3369–3377.

- [12] S.M. Patel K. Tanahashi and A. Uchiyama, On extensions of some Fuglede-Putnam type theorems involving (p, k)-quasihyponormal, spectral and dominant operators, *Math. Nachr.* **282** (7) (2009), 1022–1032.
- [13] A. Turnšek, Generalized Anderson's inequality, J. Math. Anal. Appl., 263 (2001), 121–134.
- [14] A. Turnšek, Orthogonality in C_p classes, Monatsh. Math., **132** (2001), 349–354.
- [15] A. Uchiyama, A. K. Tanahashi, Fuglede-Putnam's theorem for p-hyponormal or log-hyponormal operators. *Glasg. Math. J.*, **44(03)** (2002), 397–410.
- [16] G. Weiss, The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators. II, J. Oper. Theory 5(1) (1981), 3–16.

Mohamed Morjane

Laboratory of Analysis, Geometry and Applications, Department of Mathematics, Faculty of Science, Ibn Tofail University, P.O. Box 133, Kénitra, Morocco. E-mail address: mohamed.morjane@uit.ac.ma

Soukaina Madani

Laboratory of Analysis, Geometry and Applications, Department of Mathematics, Faculty of Science, Ibn Tofail University, P.O. Box 133, Kénitra, Morocco. E-mail address: soukaina.madani@uit.ac.ma

Mohamed Ech-chad

Laboratory of Analysis, Geometry and Applications, Department of Mathematics, Faculty of Science, Ibn Tofail University, P.O. Box 133, Kénitra, Morocco. E-mail address: m.echchad@yahoo.fr (mohamed.ech-chad@uit.ac.ma)

Youssef Bouhafsi

Laboratory of Fundamental Mathematics, Department of Mathematics, Faculty of Science, Chauaib Doukkali University, P.O. Box 20, El Jadida, Morocco. E-mail address: ybouhafsi@yahoo.fr

Received: August 3, 2024; Accepted: November 1, 2024