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SOLUTIONS OF NONLINEAR K(m,n) TYPE EQUATIONS

FRIDON DAMAN, HOSSEIN JAFARI, AND NEMATOLLAH KADKHODA

Abstract. In this article, we study a type of the K(m,n) equations
using Lie symmetry analysis method(LSAM). Calculating the symmetry
of the partial differential equations has many applications in various
fields of sciences. The Lie point symmetries and its optimal system
are given. Then, classical Lie point symmetry operators, infinitesimal
generators and invariant solutions are obtained. Finally, exact solutions
of a special type of K(m,n) equations are studied using an algebraic
method.

1. Introduction

The method of group analysis of differential equations was introduced by So-
phus Lie more than one hundred years ago. For analysis of partial differential
equations (PDEs), we apply group theory because it is a powerful method to ob-
tain the exact solutions of nonlinear PDEs and problems of mathematical physics.
Nonlinear phenomena appear in various scientific fields, such as fluid mechanics,
biology, optimal fiber, plasma physics and so on. Exact solutions of nonlinear
PDEs play a critical role in better realizing qualitative features and physical in-
terpretations of many occurrences. Many complicated events can be described
by these solutions. For this purpose, some techniques have been suggested, such
as the Kudryashov method [13], the sub-equation method [14], the exp(−φ(ξ))-
expansion method [28], the first integral method [11], the sine-Gordon method

[6], Lie group method [16], the G′

G2 -expansion method [15], the sine-cosine method
[10, 26, 27] and so on.
Rosenau and Hyman introduced and studied a type of Korteweg–de Vries (KdV)
equations wtih nonlinear dispersion

ut + umux + (un)xxx = 0, m, n > 1, (1.1)

which is calledK(m,n) by them [5]. Wazwaz solved the following type of Eq.(1.1)
when n = m [24, 25, 26, 27]

ut + aunux + (un)xxx = 0, n > 1, (1.2)
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After that, Biswas introduced a type of K(m,n) equation with generalized evo-
lution term as follows [2]:

(ul)t + rumux + s(un)xxx = 0, (1.3)

where, the first term is the generalized evolution term, while the second term
represents the nonlinear term and the third term is the dispersion term. Also, r
and s are constants, while l,m and n ∈ Z+.

In this paper, we study a special type of K(m,n) equation with l = 1, m = 2
and n = 1 as follows

ut + ru2ux + suxxx = 0. (1.4)

Also, it is called modified KdV equation [27]. Much effort has been made on
the construction of exact solutions of K(m,n) equation [29, 25, 4, 24]. In this
manuscript, we study the Lie symmetry group for K(m,n) type equation and we
obtain exact solutions of this equation using an algebraic method.

The paper is organized as follows. In Section 2 we discuss the methodology of
Lie symmetry analysis of nonlinear PDEs. The classical symmetries of nonlinear
K(m,n) equation and the Lie point symmetries of this equation are calculated
in section 3. In Section 4, we explain the group invariant solutions. In Section
5, the optimal system is obtained for one-dimensional subalgebras of nonlinear
K(m,n) equation. Finally, we obtain exact solutions for the nonlinear K(m,n)
equation in section 6. Conclusions are summarized in section 7.

2. Symmetry group analysis

Many nonlinear equations appear in various fields such as mathematical and
physical sciences. Although it is very difficult to solve nonlinear PDEs, but
much effort has been made for studying them. Symmetry is one of the most
important tools in the area of PDEs. The concepts of Lie theory are based
on the invariance of the equation under transformation groups of independent
and dependent variables, so called Lie groups. The applications of Lie groups
for solving differential equations were introduced in the nineteenth century by
Sophus Lie, when he studied the continuous groups of transformations leaving
differential equations invariant.

In the last century, the application of the Lie group method has been developed
by a number of mathematicians. Baumann [1], Bluman [3], Ibragimov [9], Olver
[18] and Ovsiannikov [19] are some of the scientists who have enormous amount
of investigations in this field. Now, we consider the following system of PDEs
with q dependent and p independent variables [17]:

△ν(x, φ
(n)) = 0, ν = 1, 2, . . . , ℓ, (2.1)

where x = (x1, x2, . . . , xp), φ = (φ1, φ2, . . . , φq) and φ(n) denotes all the deriva-
tives of φ of all orders from 0 to n. A one-parameter Lie group of infinitesimal
transformations of the system (2.1) is

x̄i = xi + εξi(x, φ) +O(ε2); i = 1, 2, . . . , p,

φ̄α = φα + εηα(x, φ) +O(ε2); α = 1, 2, . . . , q, (2.2)
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where ξi and ηα are the infinitesimals of the transformations for the independent
and dependent variables, and ε is the transformation parameter. We consider the
general vector field X as the infinitesimal generator associated with the above
group of transformations:

X =

p∑
i=1

ξi(x, φ)
∂

∂xi
+

q∑
α=1

ηα(x, φ)
∂

∂φα
. (2.3)

The n-th order prolongation of X given by:

X(n) = X +

q∑
α=1

∑
J

ηαJ (x, φ
(n))

∂

∂φα
J

, (2.4)

where J = (i1, . . . , ik), 1 ≤ ik ≤ p, 1 ≤ k ≤ n, and the sum is over all J ′s of order
0 < #J ≤ n. If #J = k, the coefficient ηαJ of ∂

∂φα
J
will depend only on k-th and

lower order derivatives of φ, and

ηJα(x, φ
(n)) = DJ(ηα −

p∑
i=1

ξiφα
i ) +

p∑
i=1

ξiφα
J,i, (2.5)

where φα
i = ∂φα

∂xi and φα
J,i =

∂φα
J

∂xi .
A vector field X is an infinitesimal symmetry of the system of differential equa-
tions (2.1) if and only if it satisfies the infinitesimal invariance condition

X(n)(△ν(x, φ
(n)) = 0 for all ν = 1, 2, . . . , ℓ. (2.6)

3. Classical Symmetries of K(m,n) equation

Let us consider a one-parameter Lie group of infinitesimal transformation:

x̄ = x+ εξ1(x, t, u) +O(ε2),

t̄ = t+ εξ2(x, t, u) +O(ε2),

ū = u+ εη(x, t, u) +O(ε2),

with a small parameter ε. The symmetry group of (1.4) will be generated by the
vector field of the form:

X = ξ1(x, t, u)
∂

∂x
+ ξ2(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
. (3.1)

The third prolongation of X is the vector field

X(3) = X + ηx
∂

∂ux
+ ηt

∂

∂ut
+ η2x

∂

∂u2x
+ ηxt

∂

∂uxt
+ η2t

∂

∂u2t

+ η3x
∂

∂u3x
+ . . .+ η3t

∂

∂u3t
, (3.2)

with coefficients

ηJ = DJ(η −
2∑

i=1

ξiuαi ) +

2∑
i=1

ξiuαJ,i, (3.3)

where J = (i1, . . . , ik), 1 ≤ ik ≤ 2, 1 ≤ k ≤ 3, and the sum is over all J ′s of order

0 < #J ≤ 3. Applying the third prolongation (X(3)) to Eq.(1.4), we can obtain
ξ1, ξ2 and η.
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Theorem 3.1. The Lie group of point symmetries of Eq. (1.4) has a Lie algebra
generated by the vector field

X = ξ1(x, t, u)
∂

∂x
+ ξ2(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
, (3.4)

where

ξ1 =
1

3
c1 x+ c3,

ξ2 = c1 t+ c2 ,

η = −1

3
c1 u.

Here c1, c2, c3 are arbitrary constants.

Proof. Applying the third prolongation of the vector field (3.1),X(3), to (1.4)
we have

X(3)(ut + ru2ux + suxxx)|(1)=0 = 0. (3.5)

Expanding the above equation and solving the obtained system, we obtain

ξ1 =
1

3
c1 x+ c3,

ξ2 = c1 t+ c2 ,

η = −1

3
c1 u.

The proof of the theorem is completed.

Corollary 3.1. The Lie algebra of infinitesimal generators of every one-parameter
Lie group of the K(m,n) equation is spanned by the three vector fields

X1 =
∂

∂x
,

X2 =
∂

∂t
,

X3 = x
∂

∂x
+ 3t

∂

∂t
− u

∂

∂u
.

The table 1 shows the commutation relations between these vector fields.
Where the entry in the i-th row and j-th column is defined as [Xi,Xj] = XiXj −
XjXi, i, j = 1, 2, 3.

[Xi, Xj ] X1 X2 X3

X1 0 0 1
3X1

X2 0 0 X2

X3 −1
3X1 −X2 0

Table 1: Commutation relations satisfied by infinitesimal generators.

4. Group Invariant Solutions

For obtaining the group transformation which is generated by the infinitesimal
generators Xi for i = 1, 2, 3, we need to solve the three systems of first order
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ordinary differential equations

dx̄

dε
= ξ1i (x̄(ε), t̄(ε), ū(ε)), x̄(0) = x, (4.1)

dt̄

dε
= ξ2i (x̄(ε), t̄(ε), ū(ε)), t̄(0) = t, i = 1, 2, 3, (4.2)

dū

dε
= ηi(x̄(ε), t̄(ε), ū(ε)), ū(0) = u. (4.3)

Exponentiating the infinitesimal symmetries of equation (1.4), we get the one-
parameter groups Hi(ε) generated by Xi for i = 1,2,3.

H1(ε) : (x, t, u) → (x+ ε, t, u), (4.4)

H2(ε) : (x, t, u) → (x, t+ ε, u), (4.5)

H3(ε) : (x, t, u) → (xe
ε
3 , teε, ue−

ε
3 ). (4.6)

Recall that in general to each one parameter subgroups of the symmetry group of
a system there will correspond a family of solutions called invariant solutions[12].
Consequently, we can state the following theorem:

Theorem 4.1. If u = f(x, t) is a solution of K(m,n) equation, so are the func-
tions

H1(ε)f(x, t) = f(x− ε, t),

H2(ε)f(x, t) = f(x, t− ε),

H3(ε)f(x, t) = f(xe−
ε
3 , te−ε)e−

ε
3 .

5. Optimal system of one-dimensional subalgebras of K(m,n)
equation

In this section, we want to divide the set of all invariant solutions of a given
differential equation into equivalence classes. If one solution can be mapped
to the another solution by a point symmetry of the PDE, then these solutions
are equivalent. Classification simplifies the problem of determining all invariant
solutions. we need only to find one invariant solution from each class, then
the whole class can be constructed by applying the symmetries. This strategy
minimizes the effort needed to obtain invariant solutions [17].

Definition 5.1. The solutions u = f(x) and u = f̄(x) are equivalent if a sym-
metry maps one to the other. Similarly, the symmetry maps X to X̄, so these
generators are regarded as equivalent. It is important to classify invariant solu-
tions by classifying the associated symmetry generators. Having done this, one
generator from each class is used to obtain the desired set of invariant solutions.
A set consisting of exactly one generator from each class is called an optimal
system of generators [8].

Theorem 5.1. Let F and F̄ be connected ε-dimensional Lie subgroups of the
Lie group G with corresponding Lie subalgebras f and f̄ of the Lie algebra g of
G. Then F̄ = gFg−1 are conjugate subgroups if and only if f̄ = Ad(g(f)) are
conjugate subalgebras [18].
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By theorem 5.1, the problem of finding an optimal system of subgroups is
equivalent to find an optimal system of subalgebras. For one-dimensional sub-
algebras, this classification problem is essentially the same as the problem of
classifying the orbits of the adjoint representation, since each one-dimensional
subalgebra is determined by nonzero vector in g. Each Xi, i = 1, 2, 3, of the basis
symmetries generates an adjoint representation Ad(exp(εXi)) defined by the Lie
series

Ad(exp(ε.Xi).Xj) = Xj − ε[Xi, Xj ] +
ε2

2
[Xi, [Xi, Xj ]]− ..., (5.1)

where [Xi, Xj ] is the commutator for the Lie algebra, ε is a parameter, and i, j =
1, 2 , 3 [18]. All the adjoint representations of the K(m,n) Lie group, with the
(i, j) the entry indicating Ad(exp(εXi))Xj are given In table 2.

Ad(exp(ε.Xi).Xj) X1 X2 X3

X1 X1 X2 −1
3X1 +X3

X2 X1 X2 −εX2 +X3

X3
1
3X1 (1 + ε)X2 X3

Table 2: Adjoint representation generated by the basis symmetries of the K(m,n) Lie
algebra.

Theorem 5.2. An optimal system of one-dimensional Lie algebras of K(m,n)
equation is provided by

(i) : X2, (ii) : X3, (iii) : X1 +X2, (iv) : X2 −X1 (5.2)

Proof. Consider the symmetry algebra g of the Eq.(1.4) whose adjoint rep-
resentation was determined in table 2 and let Hs

i : g → g defined by X →
Ad(exp(εXi)X) is a linear map, for i = 1, 2, 3. The matrices M ε

i , i = 1, 2, 3, with
respect to basis {X1, X2, X3} are

M ε
1 =

 1 0 1
3ε

0 1 0
0 0 1

 , M ε
2 =

 1 0 0
0 0 ε
0 0 1

 , M ε
3 =

 e−ε 0 0
0 e−ε 0
0 0 1

 .

(5.3)
Let

X = a1X1 + a2X2 + a3X3, (5.4)

is a nonzero vector. We will simplify as many of the coefficients a1, a2 and a3 as
possible through proper adjoint applications on X.
Assume first that a3 ̸= 0. We can suppose a3 = 1. According to Table 2, if we
accomplish on such a X by Ad(exp(a2X2)X, we can make the coefficient of X2

vanish:

X
′a = Ad(exp(a2X2))X = a′1X1 +X3.

Then we accomplish on X
′a using Ad(exp(3εX1))X

′a to vanish the coefficient

X1, so that X is equivalent to X
′′a = X3 under the adjoint representation. The

remaining one-dimensional subalgebras are spanned by vectors of the above form
with a3 = 0. If a2 ̸= 0, we put a2 = 1, and then we have

X
′b = a1X1 +X2.
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We can further act on X
′b using the group generated by X3, this has the net

effect of scaling the coefficient of X1 and X2:

X
′′b = Ad(exp(−εX3))X

′b =
1

3
a1X1 + (1 + ε)X2.

This is a scalar multiple of X
′′′b = 1

3(1+ε)a1X1 + X2, so, depending on the

sign of a1, we can make the coefficient of X1 either +1, -1 or 0. Thus any one-
dimensional subalgebra spanned by X with a3 = 0 and a2 ̸== 0 is equivalent to
one spanned by either X2, X1 + X2 and X2 − X1 . The further simplifications
are not possible. Then an optimal system of the K(m,n) equation is given by

(i) : X2, (ii) : X3, (iii) : X1 +X2, (iv) : X2 −X1 (5.5)

6. The methodology of G′

G′+G+A
-expansion method

In this section, we briefly explain the G′

G′+G+A -expansion method to obtain

exact solutions of the following type of PDEs [7]:

R (φ,φx, φt, φxx, φxt, φtt, . . .) = 0, (6.1)

where φ = φ(x, t) is an unknown function. After that we use this method to
solve a type of K(m,n) equations.
The equation (6.1) can be solved using the following steps:

• Substituting the following transformation

ξ = x− kt, k ̸= 0, (6.2)

into (6.1), it can be transformed to the following ODE

R̃(Φ,Φ′,Φ′′,Φ′′′, ...) = 0. (6.3)

Here prime denotes the derivative with respect to ξ. On rare occa-
sions, integrating equation (6.3) can be used to adapt the NODE to the
homogeneous balancing principle.

• Consider the solution of Eq. (6.3) be:

Φ(ξ) =
m∑
i=0

ai(
G′

G′ +G+A
)i, (6.4)

where ai (am ̸= 0) are constants and G(ξ) is the general solution of the
following ODE:

G′′(ξ) +BG′(ξ) + C G(ξ) +AC = 0, (6.5)

where A, B and C are constants.
• The positive integerm used in (6.4) can be derived by homogeneously bal-
ancing the biggest nonlinear component and the highest-order derivative
in equation (6.3).

• The terms of G(ξ) are then brought together into similar orders when
(6.4) is inserted into (6.4) or the equation that emerges from the inte-
gration of (6.4). Applying this process yields an expression in terms of

G′

G′+G+A . Putting the coefficients in this expression to zero, we then get
an algebraic system of equations representing the variables ai and other
related parameters.
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• Using Mathematica, the system of nonlinear algebraic equations is ana-
lytically solved.

• Analytical soliton solutions for (6.1) are then derived by computing and
putting the unknown values into equation (6.4) along with the G(ξ) (the
equation (6.5) solutions).

We know that the Eq. (6.5) has the following special solutions:
Case1. If D = B2 − 4C > 0:

G′

G′ +G+A
= 1 +

2c1 + 2c2e
√
Dξ

c1(−2 +B +
√
D) + c2(−2 +B −

√
D)e

√
Dξ

. (6.6)

Case2. If D = B2 − 4C < 0:

G′

G′ +G+A
=

(Bc1 −
√
−Dc2) cos(

√
−Dξ
2 ) + (Bc2 +

√
−Dc1) sin(

√
−Dξ
2 )

((B − 2)c1 −
√
−Dc2) cos(

√
−Dξ
2 ) + ((B − 2)c2 −

√
−Dc1) sin(

√
−Dξ
2 )

.

(6.7)

Now we apply this method for the following type of K(m,n) equation

ut + ru2ux + suxxx = 0, . (6.8)

Using the transformation (6.2), we convert the above equation into the following
ODE

−kΦ′(ξ) + rΦ2(ξ)Φ′(ξ) + sΦ′′′(ξ) = 0. (6.9)

Balancing Φ′′′ with Φ2Φ′ in (6.9) gives m = 1. Therefore, the exact solution of
Eq. (6.9) can be written in the form:

Φ(ξ) = a0 + a1(
G′

G′ +G+A
), a1 ̸= 0. (6.10)

Based on the description of this method, we have

•Set 1 : a0 =

√
k + 4Cs

r
, a1 = − 3Cs√

r(k + 4Cs)
,

B = 0, C =

√
2s(8s− 3k)− 4s

3s
. (6.11)

Using (6.11), (6.10) and cases (6.6)-(6.7) respectively, we get

φ1(x, t) =

√
k + 4Cs

r
− 3Cs√

r(k + 4Cs)(
1 +

2c1 + 2c2e
√
Dξ

c1(−2 +B +
√
D) + c2(−2 +B −

√
D)e

√
Dξ

)
,

φ2(x, t) =

√
k + 4Cs

r
−

(
(Bc1 −

√
−Dc2) cos(

√
−Dξ
2 )

((B − 2)c1 −
√
−Dc2) cos(

√
−Dξ
2 )

+(Bc2 +
√
−Dc1) sin(

√
−Dξ
2 )

+((B − 2)c2 −
√
−Dc1) sin(

√
−Dξ
2 )

)
× 3Cs√

r(k + 4Cs)
.
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•Set 2 : A0 =

√
k√
r
, A1 =

3s(3C −B)√
rk

,

B =
27C2s+ 12Cs+ 8Ck + 2k

8k + 18Cs
, C = C. (6.12)

Using (6.12), (6.10) and cases (6.6)-(6.7) respectively, we get

φ3(x, t) =

√
k√
r
+

3s(3C −B)√
rk

(
1 +

2c1 + 2c2e
√
Dξ

c1(−2 +B +
√
D) + c2(−2 +B −

√
D)e

√
Dξ

)
,

φ4(x, t) =

√
k√
r

+

(
(Bc1 −

√
−Dc2) cos(

√
−Dξ
2 )

((B − 2)c1 −
√
−Dc2) cos(

√
−Dξ
2 )

+(Bc2 +
√
−Dc1) sin(

√
−Dξ
2 )

+((B − 2)c2 −
√
−Dc1) sin(

√
−Dξ
2 )

)
× 3s(3C −B)√

rk
.

7. Conclusion

In this paper, we used the criterion of invariance of the equation under the
infinitesimal prolonged infinitesimal generators and we found the Lie point sym-
metries group of the K(m,n)-type equations. Also, we have obtained the optimal
system of K(m,n) equation. Then, we constructed the classification of group in-
variant solutions. Exact solutions for a type of K(m,n) equations have been
obtained using an algebraic method.
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