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EXPLORING THE GEOMETRY OF THE COTANGENT
BUNDLE ENDOWED WITH BERGER-TYPE DEFORMED
SASAKI METRIC OVER A STANDARD KAHLER MANIFOLD

ABDERRAHIM ZAGANE

Abstract. In this paper, we introduce the Berger-type deformed Sasaki
metric on the cotangent bundle T*M over a standard Kahler manifold
(M?™,J,g). Firstly, we compute all forms of the curvature tensors of
the cotangent bundle with this metric and present some results concern-
ing curvature properties. Secondly, we construct some almost Hermitian
structures on a cotangent bundle and search conditions for these struc-
tures to be integrable. Finally, we study some geometric properties of the
unit cotangent bundle that is endowed with the Berger-type deformed
Sasaki metric.

1. Introduction

In the literature, one of the first works that deal with the cotangent bundles
of a manifold as a Riemannian manifold is that of Patterson and Walker [7], who
constructed from an affine symmetric connection on a manifold a Riemannian
metric on the cotangent bundle, which they call the Riemann extension of the
connection. Sekizawa [9] has given a generalization of this metric in his classi-
fication of natural transformations of affine connections on manifolds to metrics
on their cotangent bundles, obtaining the class of natural Riemann extensions
which is a 2-parameter family of metrics, and which had been intensively stud-
ied. This situation has prompted many researchers to study other metrics on the
cotangent bundle (see [2, 3, 4, 6]), the most famous of which is the Sasaki metric
[8]. In this direction, inspired by the concept of g-natural metrics on tangent
bundles of Riemannian manifolds, Agca considered another class of metrics on
cotangent bundles of Riemannian manifolds that she called g-natural metrics [1].
On the other hand, Zagane proposed the Berger-type deformed Sasaki metric on
the cotangent bundle over an anti-paraKahler manifold [11, 12, 13].

In previous works [14, 15], we proposed the Berger-type deformed Sasaki met-
ric on the cotangent bundle over a standard Kéahler manifold, where we studied
the geodesics properties and the harmonicity on cotangent bundle with this re-
spectively. After stating the introduction, we describe the preliminary results
of the cotangent bundle. In section 3, we present the basic properties of the
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Berger-type deformed Sasaki metric, and we investigate the formulas relating to
its Levi-Civita connection. Section 4 investigates the different types of curvature
of the Berger-type deformed Sasaki metric, including the Riemannian curvature
tensor, the Ricci curvature, the sectional curvature and the scalar curvature. In
section 5, we explore and construct some almost Hermitian structures on the
cotangent bundle and search for the integrability conditions of these structures.
In the last section, we study the geometry of the unit cotangent bundle endowed
with the Berger-type deformed Sasaki metric, where we establish the Levi-Civita
connection of this metric and all forms of its Riemannian curvature tensors.

2. Preliminary Results

Let (M™, g) be an m-dimensional Riemannian manifold, 7% M be its cotangent
bundle and 7 : T*M — M the natural projection. A local chart (U, xz)lzlm on
M induces a local chart (77 1(U), 2%, 2° = p;),i = m +1,...,2m on T*M, where
p; is the component of covector p in each cotangent space T M, x € U with
respect to the natural coframe {dz’}. Let S7(M) (resp. S7(T*M)) the module
of C*° tensor fields of type (r,s) over the ring of real-valued C*° functions on
M (resp. T*M). We denote by V the Levi-Civita connection of g and by Ffj its
Christoffel symbols.

The Levi Civita connection V defines a direct sum decomposition

TT*M = VT*M & HT*M (2.1)

of TT*M into two complementary distributions, called the vertical distribution
VT*M and the horizontal distribution HT™ M, respectively defined by:

V(m,p)T*M = ker(dW(m’p)) = {wiaﬂ(m,p), w; € R},
HiupT"M = {X'0i(zp) + X'Pal'hi0| (2 p), X* € RY,

0 0
for all (x,p) € T*M, where 9; = 920 0; = Fy Note that V and H represent
X T
the vertical and horizontal projections on 7% M induces by V.
Let X = X'0; and w = w;dz" be local expressions in (U, z'),i =1,...,m, of a

vector field and covector field X € 33 (M) and w € SY(M), respectively. Then the
horizontal lift 71X € 33(T* M) of X € S§(M) and the vertical lift Yw € I (T* M)
of w € SY(M) are defined, respectively by

X = X0 +p T} X70;,
Vo = w; 05,

with respect to the natural frame {9;, 9;}, (see [10] for more details).
In particular, we have the vertical distribution Vp on T*M defined by

Vp = p;Y(da") = pi§;,

Vp is also called the canonical or Liouville vector field on T*M.
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The bracket operation of vertical and horizontal vector fields on 7% M is given
by the formulas: [10]

[Vw, Vo) =0,
[HXa Ve] = V(VX0)7 (22)
(X, 1y ] = H1X, Y] + V(pR(X,Y)),
for all X,Y € $§(M) and w,6 € SY(M), such that pR(X,Y) = pa Y XY dz*,
where RY,), are local components of R on M.
Let (M™, g) be a Riemannian manifold, the maps

t: QUM — (M) b IL(M)
lw — t?(w) and 0X

— SY(M)
= b(X)
defined by
9({#(w),Y) = w(Y) and b(X)(Y) = g(X,Y)

respectively for all Y € S§(M) are C°°(M)-linear isomorphism and one is the
inverse of the other. ' ‘

Locally for all w = w;dz’ € IY(M) and X = X79; € I§(M), we have

t(w) = g%w;0; and b(X) = g;; X’ da"

where (g*) is the inverse matrix of the matrix (g;;).

In the following, we denote f(w) and b(X) by w and X respectively. for all
X € S§(M) and w € SY(M).

For each z € M the scalar product g~ = (¢¥) is defined on the cotangent
space T M by, for all w,6 € IY(M)

97 (w,0) = g(&,0) = g7wb;.
In this case we have & = ¢! ow and X =goX.

Lemma 2.1. Let (M™,g) be a Riemannian manifold, we have the following.

w=w X:X,

(2.3)

g (w,0) = g(Jz,0), (2.4)
Vxw = Vxuw, (2.5)
WR(X,Y) = —R(X,Y)& (2.6)
w(VxJ) = Vx(wJ)— (Vxw)d, (2.7)
w(VxR)(Y,Z) = VxwR(Y,Z))— (Vxw)R(Y,Z)—wR(VxY,Z) (2.8)

—wR(Y, VXZ),

for all X,Y € S4(M), w,0 € V(M) and J € 31(M), where V is the Levi-Civita
connection of g (see [12]).

3. Berger-type deformed Sasaki metric

Let M™ be an n-dimensional differentiable manifold. An almost complex struc-
ture J on M is a (1,1)-tensor field on M such that J? = —I, (I is the (1,1)-
identity tensor field on M). The pair (M",J) is called an almost complex man-
ifold. Since every almost complex manifold is of even dimensional, We will take
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n = 2m in the following (in this paper). Also, note that every complex manifold
(topological space endowed with a holomorphic atlas) carries a natural almost
complex structure [5].

The integrability of a complex structure J on M is equivalent to the vanishing
of the Nijenhuis tensor N:

Ny(X,Y) = [JX,JY] - J[JX,Y] - J[X,JY] - [X,Y]
for all vector fields X,Y on M. On an almost complex manifold (M",J), a
Hermitian metric is a Riemannian metric g on M such that
9g(JX,)Y)=—g(X,JY) < g(JX,JY)=9g(X,Y), (3.1)
or from (2.4) equivalently
g Hw],0) = —g Hw,0]) & g (w],0) = g7 (w,0), (3.2)

for all X,Y € S§(M) and w, 0 € SY(M).

The almost complex manifold (M™, J) having the Hermitian metric g is called
an almost Hermitian manifold. Let (M", J, g) be an almost Hermitian manifold.
We define the fundamental or Kéhler 2-form 2 on M by

QX,Y) = g(X,JY)

for any vector fields X and Y on M. A Hermitian metric g on an almost Hermitian
manifold M" is called a standard Ké&hler metric if the fundamental 2-form 2
is closed, i.e., dQ = 0. In the case, the triple (M",J,g) is called an almost
standard Kahler manifold. If the almost complex structure is integrable, then the
triple (M™, J, g) is called a standard Kéahler manifold. Moreover, the following
conditions are equivalent:

(1) VJ =0, (V is the Levi-Civita connection of g)
(2) VQ =0,
(3) Ny=0and d2=0 [5].
As a result, the almost Hermitian manifold (M™,J,g) is a standard Ké&hler
manifold if and only if VJ = 0. Using (2.7), we also the almost Hermitian
manifold (M™, J,g) is a standard Ké&hler manifold if and only if

Vx(wJ)=(Vxw)dJ.

for all X € S§(M), w € SY(M). The Riemannian curvature tensor R of a
standard Kéhler manifold possess the following properties:

R(Y,Z)J =JR(Y,Z),
R(JY,JZ) =R(Y,Z), (3.3)
R(JY,Z) =-R(Y,JZ),

for all vector fields Y, Z on M.

Lemma 3.1. Given an almost Hermitian manifold (M™,J,g), we have the fol-
lowing:

wl = —Ja, (3.4)
JX = —-XJ,
for all X € S§(M) and w € IV (M).
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Proof. Let J = J}Zf)j ® da?, w = wrdz®, 6 = 0;dz’ and wJ = wa}]fdxh then,

w] = o?f]jaj = wpJF g0, = g N wpJRda", da?)0; = g7 (wl], da?)0;,

Jw = J}Zwkghkaj = g NwpdaF, J}Zda:h)aj =g Yw,d2? J)o;,
from (3.2), we find (3.4). O
Definition 3.1. [14] Given an almost Hermitian manifold (M",J,¢) and its

cotangent bundle T*M. A fiber-wise Berger-type deformation of the Sasaki met-
ric noted B9 is defined on T*M by:

BSg(HXvHY) = g(X,Y),

P%(1x,Y0) = o,

P("w,Y0) = g7 w,0) + 3% (w,p)g (8,0,
for all X,Y € S33(M), w,0 € SY(M), where § is some constant, (for anti-
paraKéhler manifold, see [12]).

In the following, we put A = 1+ 6%2a and a = g~ !(p, p) = |p|?. where |.| denote
the norm with respect to g~ 1.
The Levi-Civita connection 5V of T*M with Berger-type deformed Sasaki

metric 2% is given by the following theorem:

Theorem 3.1. [14] Given a standard Kdhler manifold (M", J,g) and its cotan-
gent bundle (T*M, %) endowed with the Berger-type deformed Sasaki metric.
Then we have:

BSVHXHY = H<VXY) + %V(pR(X, Y)),
PVi0 = V(Vx0) + 3 (BE0X) + 8% (0.0 (RUP.HX)),
PV = (RGO + g7 ) R DY),

BSOv,V0 = 62(g7 (w,p)Y(0T) + g7 (0, p)V(w]))

5t _ _ _
— (0 @, p g™ (0. p) + 97 (@)™ (0,0)) (0T,
for all X,Y € S§(M) and w,8 € SV(M), where V is the Levi-Civita connection
of (M"™,J,g) and R is its curvature tensor.

Lemma 3.2. Given a standard Kdhler manifold (M™, J,g) and its cotangent
bundle (T*M,P%)) endowed with the Berger-type deformed Sasaki metric. Then

BSVHXVP = 07
BSwiX = o,

5
Ve = et g wn)) ),
BSw V 5 1%
vVp w = Xg_ (w7p‘]) (pJ)a
BSvaVp =

for all X € S{(M) and w,0 € SY(M).
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As a direct consequence of Theorem 3.1, we get the following lemma.

Lemma 3.3. Given a standard Kdhler manifold (M™,J,g) and its cotangent
bundle (T*M,P%)) endowed with the Berger-type deformed Sasaki metric. Then

PVuxVpl) = SHR(IBHX)
BSw. V _ WV 21 v P01 v
Vv, (pJ) = MN(wJ)—=0"g (w,pJ)'p g (w,p)"(pJ),

A
PV (07) = (Tx0)7)+ 5 ((RCTB8X) + 0% 0, 9)(R(5, ) X)),

I M00) = 6% (g (0,p) (w]) — g (w,p])"0)
54
—;(g‘l(w,p)g‘l(&p) — g Nw,pD)g™ ' (0,p)) " (pJ),
for all X € S§(M) and w,0 € SY(M).

Definition 3.2. Given a standard Kéhler manifold (M™, J, g) and its cotangent
bundle (T*M,B%) endowed with the Berger-type deformed Sasaki metric. Let
F be a (1,1)-tensor field on M and K be a (1,2)-tensor field on M. Then we
define the vertical and horizontal lifts VF, #F and PK respectively on T*M as
follows:
VF: T*M — TT*M
(z,p) = V(pFy)
Hp . T*M — TT*M
(z,p) = H(Fu(p))
HK . T*M — TT*M
(z,p) = (K.(Tp,p)).
Locally, we have:
Y(pF) = pi¥(da'F),
HEE) = piFo),
MK Ipp) = 09 "(K(J0:,0)).
Proposition 3.1. Given a standard Kdhler manifold (M™, J, g) and its cotangent

bundle (T*M,B%) endowed with the Berger-type deformed Sasaki metric. Let F
be a (1,1)-tensor field on M and K be a (1,2)-tensor field on M, then:

BV M(F () =(Vx F)D) + 5 WR(X, F(7),
- 2
PGy VpF) =V (p(VxF)) + 3 (B, pF)X) + g™ (0, p) (RUIP, D)X,
2

HF@) + %H(R(@@)F(ﬁ)) + %g*l(w,pJW(R(Jﬁ, B)F(5)),

B3y Y (pF) =Y(wF) + 6% (97 (w, p)) (pF J) + g~ (pF, pJ)V(wJ]))

4
o @ 0Fp) + g7 o) W) ),

&
n
4
E<
s
=
:Ci/z
Il
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PG (K (75, 5)) =" ((Vx ) (5. ) + 5 0RO K (75.5)),
1

POV K (B, p) =K (I8, p)) + (K (5, &) + 5 (R (B, &) K (T, B))

+ 0%~ (w,p)) (R(JP. D) K (JP. 1)),
for all X € (M) and w € IY(M), where ﬁ? =g lo(pF), pFJ = piF;thdmt
and p(VxF) = Vx(pF) — (Vxp)F.
Proof. By the Definition 3.2, Theorem 3.1, (2.5) and (2.7) we have:

BSG e (F(p) = PS5Vux(*(F(81)))
= X'(0i(5") + pal0n () A(F (01)) + MV x F (1))

+5V(PR(X, F(00))
= H(XE"F () + 9"V F(0)) + X'pal':05(pig”") (F ()

5 (pR(X, F ()

= HVxFE) + Xp5g ™ (F00) + 5 (pR(X, F(3)).

Since the (Vxp); = —Xipaf‘?i, dfxvj = g7k, % = (pr)jdf;?;, then:

PV E@) = MxF@) - "(FTxp) + 5 (0RO, F3)

= H(VF() - F(VxD) + 5 pR(X, F(7)

= M(VxF)@) + 5 (R F@).

B3y (pF) = P Vux(pi'(da"F))
= X"(0i(pr) + pal'fi05 (pr)) V(da* F) + pi " (Vx (dz" F))
2 (M(R(p, dF F)X) + 6% (de F,p) " (R(J5. ) X))
= X(pp)V(d2*F) + pp Y (Vx (da" F)) + X'pIe,V (da* F)
L (R, pF) X) + 8% (oF, p)(R(J5, 5) X))

2
= Y(Vx(F) ~ (Vxp)F) + "R, pF)X)
2
+0 g 0Fp)) (R(IP.5)X)

L 2
= V(p(VxF) + 3 (RPF)X) + g 0F pI)(RUDP)X)

The other formulas are obtained by a similar calculation. O
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4. Curvatures of Berger-type deformed Sasaki metric

Theorem 4.1. Given a standard Kdihler manifold (M™,J,g) and its cotangent
bundle (T*M,B5%) endowed with the Berger-type deformed Sasaki metric. The
Rzemanman curvature tensor BSR of (T*M,B%) is expressed by:

PSR, )17 = (R, R(X,Y))2) - S GR(EY)pIYHR(P.5)Z)
2
+ TR, R2P)Y) — g™ GR(X, 2),p0)(BUP DY)
2
— TR, BY. 2)9)X) + 2o R(Y, 2),p0) (R(JP.5)X)

HRX,Y)Z) - SV ((V2R)(X,Y)), (@1)

2

BSRUIX,V0)12 = (VX B)(.8)2) + g™ 0,00) (VX R)(J5.5)2)
2

+ VPR RG02)) + g
2 2

=S 0.0 R 2)0) — S R(X, 2),p0)(07)

4

ﬁg

Y(0,p0)" (pR(X, R(Jp,$)2))

+ 5007 0.0)9 R(X, 2),p0)V0]) — 5V OR(X, 2),

(4.2)
BSR(IX, ) Vg = (VX R) (5 )Y ) — 3 (' R) 5, 7))
O D) (VX RT3 5)Y) — P(T5 )T, )
+ 247 ) (“WRIX. RUB)Y) — VoR(Y. R(J5.5)X))
=0 (¢T (PR(X,Y),pA) (nT) + g~ (0, ) (PR(X,Y)J))
+ 2 g RO Y ). p) () — VnR(,Y)

+ Y OROGRG.Y) - VORI RGAX),  (43)

PSR(TX, V) = MR, )X) — | (R(, O)R(G.7)X)
2

+ g7 0,00) (2"(RUIP ) X) — (R, P)R (P, 1) X))
= 2 0.0 QRO D)) + (RGO RUF. X))
= 2 0,07 (00T (RO PRUB.HX)

5

“H(n,0.)(R(J,5)X), (4.4)
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BSR(Vw, Vo)Hz =H(R(©,0)2) + §H<R@’°~”>R@’ 0)7) - §H<R<ﬁ7 0)R(p.)2)
2
N 52 0, p.7) (AR, &) R(Jp, p) Z) — *(R(Jp, p)R(5, @) Z))
g _
_ % (w,p) ("(R(5,0)R(Jp, 5)Z) — "(R(Jp, ) R(5,0)2))

+ 82710, p)) (R(Jp, @) Z) — 6°g ™ (w, p])(R(Jp,0) Z)
+6%971(0,w]) (R(JB, D) Z), (4.5)

N

BSR(Yw, Vo) =6t (0, pJ) (97 (0, p]) w — g7 (w, pJ)"0)

+0% (g7 (0, n) Y (W) — g Hw.n )V (O0T) — 297 (w,0.0) (n]))
6
%g 00.07) (57 (,p7)g ™0, 9) g7 (w,2)g ™ (6.9.) "

6
( “w,p)g M 0.pT) — g w,p )y (6.p)
( (w,pT)g " (0,m) — g7 (0,pT)g ™ (w,m))
( (w,n) " g(0,p) — g7 (0.n])g (w,p))
254 —1 —1 1%
+ 50 @, 00)97 0.p)) V(0. (4.6)

for all X,Y,Z € S4(M) and w,8,m € IY(M).
Proof. In the proof, we will use Theorem 3.1, Lemma 3.3 and Proposition 3.1.
(1) BSRX, Hy Yz = BSG 1y BV iy 17 — BIV 1y BIV 11 HZ — BV 11y 1y 12

Let F': TM — TM be the bundle endomorphism given by pF = pR(Y, Z).
Using (2.6) and direct calculations, we have:

1
BV PV 1z = Py (Vv 2) + 5V (0F))
1 1
= HVxVyZ)+ §V(PR(X VyZ)) + §V(VX(pR(Y, 7))

5 (Vxp)R(Y, 7)) ~ {(R(G, RY, Z)p)X)

52 L.
+-97 (PR(Y, 2),p)) " (R(Jp, ) X). (4.7)
From which, with permutation of X by Y, we get:

1 1
BV 1y BIVulz = H(VyVXZ)+QV(pR(Y,VXZ))+§V(Vy(pR(X, Z)))

+—g H(pR(X, Z),p])(R(Jp,)Y). (4.8)
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Also, we find:

BSV[HX’Hy] HZ - BSVH[XQ/} HZ + BSVV(pR(X7y))HZ

= H(Vixy)2) + 5 RX, Y], 2) - 3R, ROXYV)5)2)

2
£ PR(X.Y), 00 (R(IP.D)Z). (4.9)

From the formulas (4.7), (4.8), (4.9), and using (2.8) we get:

2

PSR(IX, MY 7 = PR, R(X, Y)P)Z) — g 0ROCY), pI) (R(TP. )2)
2

+ TR, RO 2P)Y) ~ o~ 0R(X, 2),00) (RUIP.)Y)
2

— LR, RO, 2)9)X) + g 0R(Y, 2),p0) (RUIp. D)X)

FHRCY)Z) + S (VX RV, 7)) 3V (VY R)(X, 2)).

Using the second Bianchi identity, we obtain the formula (4.1).

(2) PSR(TX, VO)HZ = BEN ux BV vy 17 — BEN v BN iy 7 — BN 11y vig M Z.
Let F : TM — TM be the bundle endomorphism given by F(u) = R(u,0)Z
and K : TM x TM — TM given by K (u,v) = R(u,v)Z. Hence, we obtain:

2

Ly o 62~ -
POV ux PV 7 = PV (51F () + 597 (0,00) (K (5, 7))

=5 (VX (R(3,0)2)) - 3RV x5,6)2)
_ 2
+ 1Y OROCRG.0)2) + S g™ (V6,0 (RUp.$)2)
2 52

+ 70N (VX (RUBDZ)) - a7 (0.07) (RUVx5,5)2)
2 2

= 7 @) (ROUB.Vx)Z) + 97 0.00) (R, RUP.5)2)).
(4.10)

Let F': TM — TM be the bundle endomorphism given by pF' = pR(X, Z), then
we get:

BN v PV a2 =BV (H(Vx Z) + %V(pF))

~ 2
Z%H(R(ﬁ, 0)(VxZ))+ %gfl(e,pJ)H(Ruﬁ, P)(VxZ))
9 2

+ S g ROX, 2),p0)7(00) + G0 (6.0)) (PR(X, 2)7)

4

+ %V(HR(X, Z)) — 0

5971(9719)971(1)1%(& Z),p)V(pJ).

(4.11)
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Also, we find:

BSV[HX,VQ} HZ :BSVV(VXH)HZ

ZEH(R(ﬁ, Vx0)Z) + fgl(vxe,pJ)H(R(Jﬁ, PZ).  (4.12)

2
From the formulas (4.10), (4.11) and (4.12), we obtain the formula (4.2).

(3) Applying formula (4.2) and 1%¢ Bianchi identity, we get:
BSR(HX, Hy)nV — BSR(HX, ﬁV)HY _ BS]%(H}/7 T]V)HX
With direct calculations, we obtain the formula (4.3).

The other formulas (4.4)-(4.6) are obtained by a similar calculation. We omit
them to avoid repetition. O

Proposition 4.1. Given a standard Kdhler manifold (M"™,J,g) and its cotan-
gent bundle (T*M, B%) endowed with the Berger-type deformed Sasaki metric. If
(T*M,B%) is flat, then (M™,J, g) is flat.

Proof. Tt is easy to see from (4.1) If we assume that SR = 0 and calculate the
Riemann curvature tensor for three horizontal vector fields at (z,0) we get

B3R e0) ("X, )2 = "(R,(X,Y)Z) = 0.

O
Let (z,p) € T"M with p # 0, {E;},_15 and {w'}, _7 be a local orthonormal

J J

frame and coframe on M, respectively, such that w™ = ’p 7l 1‘7 i then
p p
- 1
H 1% %

{E = Ei7Fn+j = w]7 FQTZ = ﬁ n}z:ﬁ,jim (413)

is a local orthonormal frame on T*M.

Theorem 4.2. Given a standard Kdihler manifold (M™,J,g) and its cotangent
bundle (T*M,B%) endowed with the Berger-type deformed Sasaki metric. If Ric
(resp. BSRZC) denote the Ricci curvature of (M™,J,g) (resp. (T*M,B%)), then
BSRic is expressed by:

1 n
PRic("X, ") = Ric(X,Y) = 5> 9(R(Eq, X)p, R(Ea,Y)p)

_ﬁg(R(Jﬁ, P)X,R(Jp,p)Y),

2
1 n
BSp: .(H Vv, _
Ric("X,"0) = 52 (Ve R )XE)
5 = o
59 Y0,p)) " 9((Ve,R)(Jp, p)X, Ea),

a=1
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BSRic(Yw,'8) = *Zg ©))Ea, R(p,0)Ea)
2 n L o
+r9 (W) ; 9(R(p,0)Ea, R(Jp,p)Es)
2 1 n B
+797 0.00) Y 9(R(p,©) Ea, R(JP, D) Ea)
a=1
ﬁ -1 -1(p - ~ 2
+9 (wpd)g )Y |R(Jp, ) Eal
a=1
SY2eA+1) B 8220 +1) _
28D 1w g 0.) - TE T w0)

+64(n = 2)g™" (w,p)g~ " (0,p]),
for all X,Y € S{(M) and w,0 € SY(M).

Proof. Using the local orthonormal frame (4.13) and from (4.1) and (4.2), we
have:

n
BSRiC(HX, HY) _ Z Bsg(BSR(HEa, HX)HY, HEa)
a=1
n—1
+ Z BSQ(BSR(Vwa, HX)HY, Vwa)
a=1

1
+XBSQ(BSR(V(«U”, HX)HK an),

by simple calculation, we get:

3 n
BS H H- ~ ~
Ric("X, M) §jg (Ea, X)Y, Eq) - 4§_lﬁg<R(Ea,X>p,R(Ea,Y)p>

352 = I -
2 " 9(R(X. B)p Jp)g(R(Y, Ea)p. Tp)
a=1
1 n—1 A N N
4 D 9(R(E WX, R(3w*)Y) + 9 (R[5, X, R(G.)Y).

a=1

After doing some calculations, we find:

BSRie(MX, M) =Ric(X,Y) ~ 5 3" g(R(Ew X)p, R(Ea, Y)D)

302 i
— = 9(R(Jp, p)X, R(J Zg W)X, R(p,w)Y)

— J9(RG.GX, RG.GIY) + J9(RE,5) X, R(3, 5 ).
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In order to simplify this last expression, we have:

n n n
wt = Zg(w“, DEi= Y gnw” BfEi= Y gug"WiEE;
i i,h,k=1 i,hk,j=1
n
= Z SHwIEFE; =) wiE/E; = Zw
zkj 1 1,5=1
= ZéfEi = B, (4.14)

which gives

,Zg )X RGEY) = 13 g(RG, Ea) X, B, E)Y). (4.15)
a=1

On the other hand, we have:

M=

Zg X R(p7 )Y) - g(R(ﬁ7 Ea)X7 Eb)g(R(ﬁ7 EG)Y7 Eb)

£
o
I

1

I
M=

9(R(X, Ey)p, Ea)g(R(Y, Ey)p, Ea)
1

)
o
I

I
M=

9(R(Ey, X)p, Ea)g(R(Ey, Y )p, Ea)
1

)
o
I

I
M3

9(R(Ey, X)p, R(Ep,Y)p)

S8
I

1

M:

9(R(Eq, X)p, R(Eq, Y )p). (4.16)

e
Il
—

From,(4.14), (4.15) and (4.16) we get the result.
The other formulas are obtained by a similar calculation. O

It is known that the sectional curvature BSK on (T*M, %) for a plane P is
given by:

BSg(BSR(V, W)W, V)
Sg(V, V) Bog(W, W) — B(V, W)’

where P = P(V,W) denotes the plane spanned by {V, W}, for all, linearly in-
dependent vector fields V, W € S} (T*M). Let BIK(HX, 1Y), BSK(HX,V9) and
BSK (Vw, QV) denote the sectional curvature of the plane spanned by {HX , HY},
{HX , VG} and {Vw, VG} on (T*M, B5%) respectively, where X,Y orthonormal vec-
tor fields and w, # orthonormal covector fields on M.

BSR(V,W) =

(4.17)

Pr0p051t10n 4.2. Given a standard Kdahler manifold (M™, J, g) and its cotangent
bundle (T* M, B5) endowed with the Berger-type deformed Sasaki metric. Then
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we have the following:

3 _
P(PR(IX, )Y X)) = g(R(X, Y)Y, X) = Z|R(X,Y)p[?

362 IS
—TQ(R(X,Y)p, Jp)*,

1~ &t
P(R(UX,10)'0,1X) = JIR(p0)X]* +

Zg_l(eva)Q |R(']]57 ﬁ)X|2

2

+%g*1(9,pj)g(R([5, 0)X, R(Jp,p)X),

P R("w,"0)'0,"w) = 3077 (w,00)% + 6% (g7 (w,p))? + 97 (0,0))7)

5 _ _ _ 2
_j(g 1(w7p)g 1(0,pJ) -9 1(w7pJ)g 1(0,]7)) :
From the Proposition 4.2 and the formula (4.17), we obtain the following result.

Theorem 4.3. Given a standard Kdhler manifold (M™, J,g) and its cotangent
bundle (T*M,B5) endowed with the Berger-type deformed Sasaki metric. Then
the sectional curvature B5K is expressed by:

3 . 362 .
BSK<HX7 HY) = K<X7 Y) - Z’R(Xa Y)p’2 - TQ(R(Xv Y)pu Jp)27

1 1 ~ 54
BSy-Hy V, ~ 2 -1 2 ~ 2
K(7X,"0) = - 0)X — 0 X
(X.%0) = gy G EEOXE + o7 0. 1RUB DX
52 _ - o
+59 (0, p7)9(R(p,0)X, R(Jp, p) X)),
BSK(Vw,Ve) = ! (—36%g (w,0.0)

146297 (w,pJ)? + 629710, pJ)?

5 ~ - -
-~ (9 Yw,p)g ™1 (0,p7) — g H(w,pT)g " (6,p))*
+64 (g7 (w, pI)? + g0, p])?)).

where K denote the sectional curvature tensor of (M™, J, g).

Theorem 4.4. Given a standard Kdhler manifold (M™,J,g) and its cotangent
bundle (T*M, B%) endowed with the Berger-type deformed Sasaki metric. If o
(resp., B%) denote the scalar curvature of (M™,J,g) (resp., (T*M,B%)). Then
BSy is expressed by:

1 & B 6?2 & -
BSG = - 1 E ‘R(EaaEb)pP By E ’R(Jp,p)EaP
a,b=1 a=1

52
——((n—2)A% + 2n\ + 2), (4.18)

where (Eq) is a local orthonormal frame on M.

a=1ln
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Proof. Let (Ff),_13; be a local orthonormal frame on (7™M, BSg) defined by
(4.13). Using Theorem 4.2 and definition of scalar curvature, we have

n—1
BSy ZBSRZC Fy, Fy) + Y PRic(Fyip, Fugs) + P Ric(Fon, Fan),
b=1 b=1

Through direct calculations, we get:

n n
S BSRic(Fy, Fy) = > PRic(ME,, MEy)
b=1 b=1

=a—fZ|REa,Ebp|2—fZ|R PE,
a,b=1

z Ric(Fuss, Posa) zBSRw”V )

b= b=

1 - ~ 22X - —1
= ZZZ‘R(paEb)Ea‘Q"F ( 2 )

b=1 a=1
P -1)2A+1)
)\ )
and
1
BSRic(Fyp, Foy) = XBSRic(Vw”,Vw")
- §2(2A + 1)
2
- o Y eup e - S
_52(n - 2)(/\ —1)
3 )
From this, we deduce:
B% = a——Z|REa,Ebpl2—fZ\R D) |
a,b=1
n—1 n
1 PR —=A-1) Pn-1)2A+1)
+ 0 D R B Eal + — 5 5
b=1 a=1
52)\ = S22 +1)  2n—-2)(A—1)
—_ R Jp,p)Ea|?* — - .
In order to simplify this last expression, we have
> IR, E)E* = D |R(Eq, Byl
a,b=1 a,b=1

This completes the proof. O

From Theorem (4.4), we deduce the result.
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Proposition 4.3. Given a standard Kdhler manifold (M™, J, g) of constant sec-
tional curvature k and its cotangent bundle (T* M, %) endowed with the Berger-
type deformed Sasaki metric. The scalar curvature B of (T*M,P5%), is ex-
pressed by:
BS. _ (n+A-2)A-1) , & 2
oc = n(n—1)k— 552 K —F((n—Q))\ +2nA + 2).

Proof. Since M has constant curvature k, then ¢ = n(n — 1)k. Through direct
calculations, we get the following:

= A1
Z ’R(EaaEb)ﬁP = 2(77, - 1)’%2 52
a,b=1
n _1 2
> RUBDES = 2/@2(%4)-
a=1
This completes the proof. O

5. Some almost complex structures with Hermitian metrics on
the cotangent bundle

Given an almost Hermitian manifold (M™, J, g), we consider the tensor field ¢
on T*M defined by:

{¢HX =YX +ng(X, Jp)"(pJ) (5.1)
¢'w=-"G+ pg~ (w,pJ)(Jp) |

for all X € 33(M) and w € IY(M), where 7, u : R — R are smooth functions.
I) First we start by studying the case n # 0 and u # 0.
Note that, from (3.4) and (3.5), we have:

{éH(Jﬁ) = (=1+na)"(pJ)
6" (p]) = (1 + po)"'(Jp)
Lemma 5.1. Given a standard Kdahler manifold (M™,J,g) and its cotangent
bundle (T*M,B5%) endowed with the Berger-type deformed Sasaki metric. Then
the tensor field ¢ defined by (5.1) is an almost complex structure if and only if
n—p+nua =0.
Proof. According to (2.3), (2.4), (3.1) and (3.2), we obtain:
¢*("X) = o(e("X))
= o("X) +ng(X, Ip)o(V(p]))
= X + g™ (X, p ) (T) +0g(X, TP (1 + pa) ()
= X — ug(X, Jp)"(Jp) + (X, Jp)(n + nue) "(Jp)
= =X+ (n— p+npa)g(X, Jp)(Jp). (5.2)
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o*(w) = o(o('w))

= —0(""®) + ng~ ! (w.p))o("(Jp))

= VG —n9(@,75)" () + ng~ (w,pJ) (=1 + 1)V (p])

= —wHngHw,p)" (p]) + g7 (w, pJ)(—p +npa)’ (pJ)

= YW+ (n—p+nua)g (@, p]) (pJ). (5.3)
From (5.2) and (5.3), then ¢? = Idp«) equivalent to n — u + nua = 0. O
Theorem 5.1. Given a standard Kahler manifold (M™, J,g), whose cotangent
bundle (T*M,B5) is endowed with the Berger-type deformed Sasaki metric and

an almost complex structure ¢ defined by (5.1). Then the triple (T*M, ¢, %) is
an almost Hermitian manifold if and only if

n— p+nuo =0, (5.4)
p+An—48%=0, '

where A\ = 1 + §%a.
Proof. For Hermiticity condition, we put for all U,V € I} (M):

AU, V) = BS(eU, V) + B (U, oV).

(i) A"X, YY) = Po%(efX )+ ("X, ") = 0,
(i) A("w,"0) = Po%(¢"w V9) %9(Yw, ¢"0) = 0,
(i) A(Yw,"Y) = 9(¢V YY)+ Po(Yw, ¢MY)
9(—

1S+ ng™ (w,p ) (7p), 1Y)
+55%(Yw, VY + ng(Y, Jp)V(pJ))
= =M@, Y) + pg~ (w,pd) P (M(Ip), TY)
+5%(Yw, YY) + ng(Y, Jp)B%(Yw, V(p.))
= —9(@,Y) +pug (@, p)g(Jp,Y) + 97 (
+0%g7 (w,pJ)g (V. pJ) + nrg(Y, Jp)g Hw,pJ)
= (p+nr—6)g (w,p)g(Y, Jp),
then 5% is Hermitian on 7% M if and only if A(Vw, #Y) = 0i.e. p+nr—62=0. O

w,Y)

By (5.4), we have

A A—1
:E—’—f andu:L (5.5)
av «
where ¢ = +1. By substituting them in (5.1), we get:
S A
% = VX + L x, 7))

VA ’ (5.6)

_ evA—1 _ ~
Pw =15+ —— Yw,p)(Jp)
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We shall study integrability of ¢. As we know that the integrability of ¢ is
equivalent to the vanishing of the Nijenhuis tensor. The Nijenhuis tensor of ¢ is
given by

where U,V € S§(T*M).
Proposition 5.1. Given a standard Kdhler manifold (M™,J,g) and its cotan-
gent bundle (T*M,P%) endowed with the Berger-type deformed Sasaki metric.

The almost complex structure ¢ defined by (5.1) is integrable if and only if
Ny(BX, Yy = 0, for all X, Y € S{(M).

Proof. We put ¢Vw = W and ¢V0 = HZ, then we have:
No("w,0) = [¢"w,0"0] — ¢[¢"w, 0] — ¢['w, V0] — ["w, 6]
= ["W,7Z) + o["W, ¢"Z] + ¢[¢"W, 2] — [¢"W, ¢"'Z]
= —([o"W,¢"2] — ¢lo"W,"Z] — ¢["W, ¢"Z] — ["W, " 2))
= —Ny,("'W,"2).

No("w, ) = [¢"w,0"Y] = ¢[¢"w, Y] — ¢["w, ¢"V] - [V, Y]
= "W, 0™ = "W, Y] + ¢[6"W, ¢"Y] + [o"W, Y]
= ¢ ([¢"W, 6"y = olo"W, Y] — o["W, ¢"Y] — "W, Hy])
= oNg(Fw, Hy).
O

Lemma 5.2. Given a standard Kdhler manifold (M™,J, g), we have the follow-
mg:

(1) "X (n) =0,

(2) VX(n) =21'g9(X,p),

(3) Y(pJ)(n) =0,

4) "X (9(Y, Jp)) = 9(Vy X, Jp),
(5) VX (g(Y, Jp)) = g(Y, JX),
(6) V(pJ)(g(Y, Jp)) = g(Y,p),
(7) [H)E’ V(p*])] =0, "

(8) VX, V(pJ)] = V(X J),

9) V(pJ),"(pJ)] = 0.

for all X,Y € S{(M), where n is defined by (5.5).

Proposition 5.2. Given a standard Kahler manifold (M™, J, g), whose cotangent
bundle (T*M,B5) is endowed with the Berger-type deformed Sasaki metric and
an almost complex structure ¢ defined by (5.6), then

No(X" YT = n(g(Y, Tp)V(XT) = g(X, Tp)" (Y T) = g(X, TY)"(pJ))
+211' (9(X, p)g(Y, Jp) — g(X, Jp)9(Y.p)) " (pJ) — (PR(X,Y)).
for all X,Y € S{(M), where n is defined by (5.5).
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Proof. We have:
No("X, 1Y) = [07X, ¢"Y] = 6[¢"X, Y] - ¢[X, 6"Y] - [X, Ty ].

Using Lemma 5.2 and direct calculations, we get the following formulas:

X, 0"Y] = n(g(V, Jp)V(XJ) — g(X, Jp) (Y J) — g(X, JY) (pJ]))
+2n (9(X, p)g(Y, Jp) — 9(X, Tp)g (Y, p)) " (p]),
olo"X, Y] = H(VyX),
o["X,0"y] = —H(VxY),
X, Hy] = HX, Y]+ V(pR(X,Y)).
This completes the proof. [l

Theorem 5.2. Given a standard Kdhler manifold (M™,J,g) and its cotangent
bundle (T*M, %) endowed with the Berger-type deformed Sasaki metric. The
almost complex structure ¢ defined by (5.6) is integrable if and only if

PRIX,Y) = n(g(Y,Jp)(XJ) — g(X, Jp)(YJ) — g(X, JY)(pJ))
+21) (9(X, ) g(Y, Jp) — g(X, Tp)g(Y, D)) (pJ). (5.7)

It is known that if the base manifold (M",J,¢g) is a standard Ké&hler man-
ifold, then the Riemannian curvature tensor R of the base manifold satisfies
the equalities (3.3). Then, according to (5.7), this identity is never satisfied.
This shows that the almost complex structure ¢ is never integrable. Hence the
triple(T* M, ¢, %) is never a standard Kihler manifold.

IT) Secondly, we study the case: 7 = p = 0. the tensor field ¢ on T*M
expressed by:

Hy _ Vv
{¢ r=x (5.8)

¢V — —H(:D

for all X € S3(M) and w € IY(M). We easily see that the tensor field ¢ is an
almost complex structure on 7% M.

Theorem 5.3. Given a standard Kdhler manifold (M™, J,g) and its cotangent
bundle (T* M, B%) endowed with the Berger-type deformed Sasaki metric and the
almost complex structure ¢ defined by (5.8), then

(1) The Berger-type deformed Sasaki metric is Hermitian with respect to ¢ if and
only if 6 = 0 i.e. the triple (T*M, ¢, %) is an almost Hermitian manifold, then
BSy reduces to the Sasaki metric.

(14) In the case of & # 0 The Berger-type deformed Sasaki metric is never Her-
mitian with respect to ¢.

Proof. For Hermitity condition, we put for all U,V € %é (M):

AU, V) =B5%(¢U, V) + P (U, ¢V).
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(i) AC"X, YY) = P(eMX, My) 4+ Po(MX, ¢MY) = 0,

(i) A(Yw,'0) = P%(¢"w,"0) + <w7¢V9>=o,

(i) A(Yw,"Y) = P%(¢"w, V) + P (Yw, ¢"Y)
g( H HY (V 7V}A})

= —g@,Y)+g " w,Y)+ 6% (w,p))g (Y, pJ)
= &g N (w,pJ)g(Y, Jp),

then B% is Hermitian with respect to ¢ if and only if § = 0. U

Theorem 5.4. Given a standard Kdihler manifold (M™,J,g) and its cotangent
bundle (T*M,B%) endowed with the Berger-type deformed Sasaki metric. The
almost complea: structure ¢ defined by (5.8) is integrable if and only if M is flat.

Proof. Using (2.2), (2.5) and Proposition 5.1, we have:

Ny("X,My) = [o"X,¢"Y] - ¢[o"X, Y] - ¢["X, ¢"Y] - [MX, Y]
VX, VY] = o[VX, Y] - ¢[7X, VY] - HIX, Y] - V(pR(X,Y))
= ¢V(VyX) - ¢V<vx> "X, Y] = Y(pR(X,Y))
= —HvyX)+ VXY) X, Y] - Y(pR(X,Y))
= (vxY) - H(VyX) - "X, Y] - Y(pR(X,Y))
= —Y(pR(X,Y)).

6. Berger-type deformed Sasaki metric on unit cotangent bundle
T M

The unit cotangent (sphere) bundle over a standard Kahler manifold (M™, J, g),
is the hyper-surface

TiM = {(x,p) € T*M, g~ (p,p) = 1}.

The unit normal vector field N to 71 M is given by N = Vp

The tangential lift 7w with respect to 2% of a covector w € T M to (z,p) € Ty M
as the tangential projection of the vertical lift of w to (x,p) with respect to N,
that is

Tw = Vw - Bsg(m,p) (vaN(r,p))N D) — w 9z (wap)vp(m,p)'
From the above, T*M decomposes into the direct sum as follows:
Ty T*M =Ty ) Ti M & span{ N py} = Tio ) T M @ span{"pupn},  (6.1)

where (z,p) € TY M.
The Levi-Civita connection 25V on T *M induced by B is given by the fol-
lowing theorem:
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Theorem 6.1. Let (M",J,g) be a standard Kdihler manifold and T M its unit
cotangent bundle equipped with the Berger-type deformed Sasaki metric. Then we
have:

PGuyy = H(VxY) + LTRR(X.Y))

BSVnx"0 = T(VX9)+%(H<R(15,5)X)+529_1(97PJ)H(R(J15715)X)%
PG = L (UR(G.O)Y) + 8% (w0, RUBD)Y)),
BV, = —g M (0,p)"w + 6% (g7 (w, p])T(OT) + g7 (0, p]) (w.]))

—0% (g7 (w,p])g " (0,p) + g (w,p)g~ " (0,p])) (),

for all X,Y € S§(M) and w,8 € SV(M), where V is the Levi-Civita connection
and R is its curvature tensor.

Now, we shall calculate the Riemannian curvature tensor on 77 M induced by
the Berger-type deformed Sasaki metric 5%.

Denoting by ? SR the Riemannian curvature tensors on T7 M induced by BSy,
from the Gauss equation for hypersurfaces we deduce that BSﬁ(U , V)W satisfies

BSRU, VYW = {(PSR(U, V)W) — B(U,W).AxV + B(V,W).AxU,  (6.2)

for all U, V,W € S}(T*M), where {R/(U, V)W) is the tangential component of
RA(U, V)W with respect to the direct sum decomposition (6.1), Ay is the shape
operator of 7'M in (T* M, B53) derived from N, and B is the second fundamental
form of Ty M (T7M as a hypersurface immersed in T* M), associated to N on
TFM.

AnU is the tangential component of (—=ZSVyN) i.e.

AnU = =(P5VyN), (6.3)
B(U, V) is given by Gauss’s formula, 5V, V = BSY,V + B(U,V).N, so
B(U,V) = B%(BSvy,v, N). (6.4)

Lemma 6.1. Given a standard Kdhler manifold (M™, J, g) and its unit cotangent
bundle Ty M endowed with the Berger-type deformed Sasaki metric. Then we
have:

('52

ANHX = O, A/\/TOJ = —T(JJ — mg_

Yw,p)(pJ),

BHX, fy) = B(HX,79) = B('w,fy) =0,
and
B('w,"0) = g7 (w,p)g " (0,p) — g (w,0) — 2%~ (w, Jp)g~ ' (6, Jp),
forall XY € S(lj(M) and w,0 € SY(M).
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Proof. Using Theorem 3.1, Lemma 3.2, (6.3) and (6.4) we get the following:

(i) ANIX = —(P5VuyN) = —H(B9VuxVp) = 0,
(zz) A/\/Tw = t(BSva ) = t(BSVVw_g—l(wm)vap)
= PV, "p— g7 (w.p)P°Vy, D)
52
= —H(w+ —gHw,p)®]) — g (w,p)"D)

2

) _
= _Tw - 1 +529 l(vaJ)T(pJ)u
(i) BUIX,Y) = BS(B59 My, )

= P((VxY),"p) +

5 9(M(pR(X,Y), "p) =0,

BSVHX(VQ - g—l(e’p)vp)’/\/)

(
= B3y
= (P8~ X (g71(0,9) 2 — 97 (6,0)Vix B, N)
_ 2
((Vx0) + 3 (R.6)X) + G (0,00 (RUIp, p)X)

—g7 4 (Vx8,p)"p, N)
_ 2

= BSyI(Vxh) + ~HRG.DX) + &

5 59 (0:p]) " (R(TD,)X), N)
= 0.

The other formulas are obtained by a similar calculation. O

Theorem 6.2. Let (M™, J,g) be a standard Kdhler manifold and (T M, B5) its
unit cotangent bundle equipped with the Berger-type deformed Sasaki metric, then
we have the following formulas.

R 2
BSRUIX, )12 = LI(R(, ROXY)PVZ) — ™ 0ROXY). 00 (BUB. £)2)
2
+ LR RO 2)Y) — g ORIX, 2), 00 (RUIB DY)
2
~ TR, BY. 2)5)X) + 2 0R(Y, 2),p0) (R(JP.5)X)

HR(X,Y)Z) ~ ST (p(V2R)(X, ), (65)

2

BSRUIX, T0)17 = (VX R)5.0)7) + g7 (0. p]) (VX B)(T5.7)7)
2

+ RO RG.OZ7) + %

1 79 (0.p))(pR(X, R(Jp, $)2))

52 2

= O RO 2)7) — g pR(X, 7). ) (@)

— %T@R(X, 7)), (6.6)
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1

PSRN, MY )Ty =2 (VxR (3, )Y) — 5 (VY R) (5. 7)X)

“(n,pJ)("(pR(X, R(Jp, p)Y) — T(pR(Y, R(Jp, p) X))
-6 ( 'pR(X,Y),pJ) (nJ)+g‘1(777pJ)T(pR(X7Y)J))

+ Z T(pR(X,R(p,7)Y)) — Z "(pR(Y, R(p,7)X))

v

+ S ) (VxR I55)Y) = (T B)(J5. ) X))
2
iy
2

~TR(X, Y)), (6.7
PSR(IX, M)y = HR@.7)X) — (R, B RG,1)X)
+ 2g710.00) (M(R(IB7)X) - "(BUP. DG 7)X))
= ) QIR B)X) + PGB R(IP.5)X))
- Tg‘l(H pJ)g™" (n,pJ)(R(Jp, ) R(Ip, 5)X)
- 5229—1(,9 PRI )X). (65)

BSR(Mw,T0) = (g7 (0,7m) + 0*(1 + 26%)g (0, p])g " (n,pJ)) "
— (g7 @, m) +0*(1 +26*) g~ H(w,pJ)g " (n,p]))"0
+06% (g7 0, m)) @) — g~ @, n))"(07) — 297" (@,00)" (1))
+6%(g7 (w,pN)g 1 (0.7) — g7 (0,p)g @, 7)) (pJ), (6.10)

for all X,Y € S{(M) and w,0 € SY(M), where @ = w — g~ (w, p)p and
w = g_1 ow.
Proof. Using Gauss’s equation (6.2), Theorem 4.1 and Lemma 6.1, we directly

obtain the formulas (6.5) - (6.9) for the curvature tensor. As for the last formula
(6.10), using simple calculations, we find:

BSR(Tw, )Ty = (B5R("w, 10) ™) — B(Tw,Tn). Ax"0 + B(18, ). AnTw, (6.11)
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t(BSR(Tw’TQ)T ) (BSR( ) )
=59 (n,pJ) (¢ (0, p]) 'w — g~ (w, pJ)"0)
+0%(g” (9 n) @) — g~ @, 7)'(07) - 29 (@,00)"(7]))

4
+ oo @D )g @) — g7 0.0 @) ),

B('w, ™). An"0 =(g7(0,m) + 269 (w,pJ)g ' (n,p]))"0
2

+ %g’l(ﬂ,pJ) (9710, m) +26°g (w,pJ)g " (n,p])) (p]),

and

B("0," ). An"w =(g~ (@, 7) + 26%°g7 (0, p)g " (n,p])) w

5 _
+ 59 (w.pd) (g7 @,7) + 26%7 (0, p])g ™" (0. p])) (0 ]),
By substituting them in (6.11), we get (6.10). O
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