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SPECTRAL PROBLEMS FOR STURM-LIOUVILLE OPERATOR

WITH NON-SEPARATED BOUNDARY CONDITION

LINEARLY DEPENDENT ON THE EIGENPARAMETER

IBRAHIM M. NABIEV, LEYLA I. MAMMADOVA, AND GULDANE S. MAMMEDZADEH

Abstract. The paper considers the Sturm-Liouville operator with sepa-
rated and non-separated boundary conditions. The non-separated bound-
ary condition contains a linear function of the spectral parameter. The
properties of eigenvalues are studied, and a theorem of uniqueness of the
solution of the inverse problem of recovering the corresponding boundary
value problems from two spectra is proved.

1. Introduction

The theory of direct and inverse spectral problems has gained considerable pop-
ularity and importance in the last few decades, mainly due to their applications
in numerous fields of science and technology (see, for example, [1, 7, 19, 25, 26]).
Various aspects of such problems and methods for solving them have been stud-
ied by many authors, a large number of works have been published on this topic
(see, for example, [20, 26] and the literature therein). Since 1970, specialists
have actively begun to study direct and inverse spectral problems for differen-
tial operators with non-separated (including periodic, antiperiodic, quasiperiodic
and generalized periodic) boundary conditions. A review of results related to
solutions of these problems can be found in [12,18,22,27].

From the perspective of physical applications, boundary value problems with a
spectral parameter in the boundary conditions are of great interest. Many applied
problems from the fields of geophysics, electronics, meteorology, ecology and other
sections of modern science also lead to the consideration of such problems (see
monograph [1] and the literature cited therein).

Consider a boundary value problem generated on the interval [0, π] by the
Sturm-Liouville differential equation

−y′′ + q (x) y = λ2y (1.1)

and boundary conditions

y (0) = 0,
y′ (0) = (αλ+ β) y (π) ,

(1.2)
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where q (x) ∈ L2 [0, π] is a real function, λ- spectral parameter, α > 1, β ̸= 0
are real numbers. Hereafter, we will denote this problem by B.

Direct and inverse problems for equation (1.1) under separated boundary con-
ditions containing a spectral parameter were considered in the works of a number
of authors (see [3–5, 7, 10–12, 16, 17, 21, 22], etc.). The problems of recovering
operators with a polynomial inclusion of the spectral parameter in non-separated
boundary conditions have been studied in [2, 9, 14,19,23,24].

It should be noted that in the work [16] a problem close to B in its formulation
is considered, in which the asymptotics of the eigenvalues and eigenfunctions are
found in the case when λ is present in the differential equation and boundary
condition.

In this paper some properties of the eigenvalues of problem B are studied,
and the formulation and proof of a uniqueness theorem for the inverse problem
of recovering the corresponding boundary value problems from spectral data are
provided. The spectra of two boundary value problems are used as spectral data.

2. Properties of the spectrum of boundary value problems

Definition 2.1. A complex number λ0 is called an eigenvalue of a boundary value
problem B, if the equation (1.1) has a nontrivial solution y0 (x) for λ = λ0 that
satisfies boundary conditions (1.2); in this case y0 (x) is called the eigenfunction
of the problem B which corresponds to the eigenvalue λ0. The set of eigenvalues
is called the spectrum of the problem B.

We denote by s(x, λ) the solution of equation (1.1) satisfying the initial con-
ditions

s(0, λ) = 0, s′(0, λ) = 1.

For any x, functions s(x, λ) and s′(x, λ) are entire functions (of exponential type)
of the variable λ. The eigenvalues of problem B are the zeros of the characteristic
function

δ (λ) = (αλ+ β) s (π, λ)− 1. (2.1)

Using the well-known formula [20]

s (π, λ) =
sinπλ

λ
−Q

cosπλ

λ2
+

f (λ)

λ2

and the Paley–Wiener theorem from (2.1) for function δ (λ) we obtain the fol-
lowing representation:

δ (λ) = α sinπλ− 1−Qα
cosπλ

λ
+ β

sinπλ

λ
+

g (λ)

λ
, (2.2)

where Q = 1
2

∫ π
0 q (x) dx, f (λ) =

∫ π
−π f̃ (x) cosλxdx, g (λ) =

∫ π
−π g̃ (x) e

iλxdx,

f̃ (x) ∈ L2 [0, π] , g̃ (x) ∈ L2 [−π, π] .

Theorem 2.1. The following statements are true:
1) The boundary value problem B has a countable set of eigenvalues.
2) The number λ = −α

β is not an eigenvalue of problem B.

3) If the number λ = 0 is an eigenvalue of the problem, then it is simple, i.e.
if δ (0) = 0, then δ′ (0) ̸= 0.
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4) If for some λ0 ̸= 0, δ (λ0) = 0 holds, then δ (−λ0) ̸= 0, i.e. no two
eigenvalues of problem B can be symmetric with respect to the origin.

Proof. Statement 1) is established similarly to the proof of theorem 1 from [18].
The number λ = −α

β is not a zero of the characteristic function δ (λ), since by

virtue of (2.1), δ
(
−α

β

)
= −1 ̸= 0 holds. Therefore, statement 2) is true.

If λ = 0 is an eigenvalue of the problem, then from relation (2.1) it follows
that

δ (0) = βs (π, 0)− 1 = 0.

From here

s (π, 0) =
1

β
. (2.3)

Since function s (π, λ) is even, its derivative is an odd function. It is clear that
an odd function (defined at zero) is equal to zero at zero.

Therefore
ṡ (π, 0) = 0, (2.4)

where the dot above the function denotes differentiation with respect to the
parameter λ. Differentiating equality (2.1) with respect to λ, we have

δ̇ (λ) = αs (π, λ) + (αλ+ β) ṡ (π, λ) .

By substituting λ = 0 into this equation and taking into account relations (2.3)
and (2.4), we obtain

δ̇ (0) = αs (π, 0) + βṡ (π, 0) = αs (π, 0) = α · 1
β

̸= 0.

Thus, we have shown that if λ = 0 is an eigenvalue of problem B, then it is simple
and we have thus established the validity of statement 3). Let us finally prove
statement 4). Let’s assume the opposite. Let δ (λ0) = δ (−λ0) = 0 (λ0 ̸= 0).
Then from relation (2.1), due to the parity of function s (π, λ), we obtain

0 = δ (λ0)− δ (−λ0) = (αλ0 + β) s (π, λ0)− (−αλ0 + β) s (π,−λ0) =

= (αλ0 + β) s (π, λ0)− (−αλ0 + β) s (π, λ0) =

= αλ0s (π, λ0) + αλ0s (π, λ0) = 2αλ0s (π, λ0) ;

0 = δ (λ0) + δ (−λ0) = (αλ0 + β) s (π, λ0)− 1 + (−αλ0 + β) s (π, λ0)− 1 =

= 2βs (π, λ0)− 2 = 2β · 0− 2 = −2.

We got the wrong equality 0 = −2. This means that our assumption is incorrect.
Thus, if the number λ0 ̸= 0 is an eigenvalue, then −λ0 cannot be an eigenvalue
of problem B. The theorem is proved. □

Along with problem B, boundary value problem B1 is also considered, gener-
ated by the same equation (1.1) and boundary conditions

y (0) = 0,
y′ (0) = (αλ+ β) y′ (π) .

Spectrum {µk} (k = 0,±1,±2, ...) of problem B1 coincides with the sequence of
zeros of the characteristic function

δ1 (λ) = (αλ+ β) s′ (π, λ)− 1. (2.5)

All the statements of theorem 2.1 are also valid for problem B1.
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Theorem 2.2. Eigenvalues γk and µk (k = 0, ±1, ±2, ...) of boundary value
problems B and B1 respectively, for |k| → ∞ satisfy the following asymptotic
formulas:

γk = k + ak +
bk
πk

+
rk
k
, (2.6)

µk = k +
1

2
+

dk
πk

+
ξk
k
, (2.7)

where ak = (−1)k

π arcsin 1
α , Q = 1

2

∫ π
0 q (x) dx,

bk = Q+
(−1)k+1 β

α
√
α2 − 1

, (2.8)

dk = Q+
(−1)k+1

α
, {rk} , {ξk} ∈ l2.

Proof. Using representation (2.2) and Rouché’s theorem, it is easy to establish
that the roots γk of the characteristic equation

δ (λ) = 0 (2.9)

at |k| → ∞ obey the asymptotics

γk = k + (−1)k arcsin
1

α
+ θk, (2.10)

where θk = O
(
1
k

)
. By substituting the right-hand side of equality (2.10) into

equation (2.9), we can obtain a more accurate asymptotic formula for γk. Indeed,
taking into account (2.10) and expansions cosx = 1 + O

(
x2

)
, sinx = x +

O
(
x3

)
(x → 0) , we have

sin γkπ = (−1)k sin

[
(−1)k arcsin

1

α
+ θkπ

]
=

= (−1)k
[
sin (−1)k arcsin

1

α
cos θkπ+

+cos (−1)k arcsin
1

α
sin θkπ

]
+O

(
1

k

)
=

=
1

α
+

√
1− 1

α2
· θkπ · (−1)k +O

(
1

k

)
;

cos γkπ = (−1)k cos

[
(−1)k arcsin

1

α
+ θkπ

]
=

= (−1)k
√

1− 1

α2
− 1

α
θkπ +O

(
1

k

)
.

Moreover, {g (γk)} ∈ l2 by virtue of Lemma 1.4.3 of the book [20]. Then

δ (γk) =
√

α2 − 1 θkπ (−1)k − Q (−1)k
√
α2 − 1

k
+

β

αk
+

rk
k

= 0, {rk} ∈ l2.

From here

θk =
Q

πk
+

(−1)k+1 β

απ
√
α2 − 1

· 1
k
+

r̃k
k
, {r̃k} ∈ l2.
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Taking this relation into account, from (2.10) we obtain the asymptotic formula
(2.6). The validity of the asymptotics (2.7) is established in a completely similar
way. It is only necessary to use the relation (2.5) and the representation [20]

s′ (π, λ) = cosλπ +Q
sinλπ

λ
+

f1 (λ)

λ
,

where f1 (λ) is an entire function of exponential type no greater than π, square
summable on the real axis. The theorem is proved. □

3. Inverse problem

Consider the following inverse problem: given spectra {γk} and {µk} of bound-
ary value problems B and B1, construct function q(x) in the Sturm-Liouville
equation (1.1) and coefficients α, β in the boundary conditions (1.2).

The following uniqueness theorem is true.

Theorem 3.1. Boundary value problems B and B1 are uniquely recovered from
their spectra, with exception of some arbitrary eigenvalue.

Proof. According to the asymptotic formula (2.6)

γ2k = 2k +
1

π
arcsin

1

α
+

b2k
2πk

+
r2k
2k

. (3.1)

From here we find parameter α of the boundary condition (1.2) using formula

α =
1

lim
k→∞

sinπ (γ2k − 2k)
.

Due to the asymptotics (2.7)

µ2k+1 + µ2k = 2k + 1 +
1

2
+

1

(2k + 1)π

(
Q+

1

α

)
+

+2k +
1

2
+

1

2kπ

(
Q− 1

α

)
+

ωk

k
= 4k + 2 +

Q

kπ
+

lk
k
,

where {ωk} , {lk} ∈ l2. Using this relation we define Q as follows:

Q = π lim
k→∞

k (µ2k+1 + µ2k − 4k − 2) .

Knowing the values of α and Q, it is possible to uniquely recover the parameter
β using (2.6) and (2.8). Indeed, due to the relation (2.8), we have

b2k = Q− β

α
√
α2 − 1

.

On the other hand, from (3.1) it easily follows that

b2k = 2πk

(
γ2k − 2k − 1

π
arcsin

1

α

)
+ πr2k.

According to the last two equalities we find

β = α
√
α2 − 1

Q− 2π lim
k→∞

k

(
γ2k − 2k − 1

π
arcsin

1

α

) .
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Now, using Theorem 5 of article [6], we will show that characteristic functions
δ (λ) and δ1 (λ) of boundary value problems B and B1 can be uniquely represented
as an infinite product over spectra {γk} and {µk} with exception of any one
eigenvalue. Indeed, let us consider the function

θ (λ) = λδ (λ) = λS (λ) +

∫ π

−π
w (x) eiλxdx,

where

S (λ) = α sinπλ− 1 +
Qα

λ

(
sinπλ

πλ
− cosπλ

)
+ β

sinπλ

λ
,

w (x) = g̃ (x)− Qα

2π
(see (2.2)). The function S(λ) is a sine-type function, and the theorem mentioned
above states that θ(λ) is representable as an infinite product over its zeros and
uniquely determined by them with exception of any one. The same fact can be
obtained with respect to function δ1 (λ) in a similar way.

From relations (2.1) and (2.5) we determine the characteristic functions s (π, λ)
and s′ (π, λ) of the boundary value problems generated by the same equation (1.1)
and boundary conditions y (0) = y (π) = 0 and y (0) = y′ (π) = 0 respectively,
using formulas

s (π, λ) =
δ (λ) + 1

αλ+ β
, s′ (π, λ) =

δ1 (λ) + 1

αλ+ β
.

Finally, from the sequences of zeros of functions s (π, λ) and s′ (π, λ), the coeffi-
cient q (x) of equation (1.1) is recovered using a well-known procedure (see, for
example, [15]). The theorem is proved. □

It is easy to see that the proof of theorem 3.1 also contains an algorithm for
recovering boundary value problems from two spectra.
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