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MIXED PROBLEM FOR THE NEGATIVE ORDER MODIFIED
KORTEWEG-DE VRIES-COSINE GORDON EQUATION

AKNAZAR KHASANOV, DOSTONBEK BAYMUROTOV,
AND RAYKHONBEK ESHBEKOV

Abstract. In this paper, the negative order modified Korteweg-de Vries—
cosine Gordon equation (nmKdV-coshG) in the class of periodic infinite-
gap functions is integrated using the inverse spectral problem method.
It is demonstrated that the Cauchy problem for the infinite Dubrovin
differential equation system is solvable in the class of twice continuously
differentiable periodic infinite-gap functions. It is demonstrated that the
mKdV-coshG equation is satisfied by the sum of the uniformly conver-
gent functional series constructed by solving the Dubrovin differential
equation system. Furthermore, it is demonstrated that a global solu-
tion to the mixed problem for the negative order modified Korteweg-de
Vries—cosine Gordon equation exists for sufficiently smooth initial data.

1. Introduction and Statement of the Problem

In this work, we consider a mixed problem for the negative order modified
Korteweg-de Vries—cosine Gordon equation (nmKdV-coshG) of the form

{a(t) (ugt — cosh(2u)) — b(t) (ugzat — (2ugpizt),) =0,
Hax = u%a

(1.1)

with the conditions
u(@,t)];—g = uo(z), uo(z +7) = ug(x) € C°(R),
w(@, )] ,mg = a(t), palz,t)]—9 = B(1), (1.2)
[uu’vt(‘T’ t) - Ml‘t(xv 75)”33:0 = C(t)’

in the class of real infinite-gap 7 periodic with respect to x functions satisfying
the smoothness conditions

u(z,t) € Coy(t>0)NC1t>0), pz,t) € CH{(t>0)NCE>0).  (1.3)

Here a(t),b(t) € C[0;00) and «(t), B(t),((t) € CL(t > 0) N C(t > 0) are given
continuously differentiable bounded functions.
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Note that if in equation (1.1) the coefficients a(t) = 1,b(t) = 0, then (1.1)
takes the form of the hyperbolic cosine Gordon equation popular in the literature
( 23))

Ugt = cosh(2u),u = u(x,t),z € Rt > 0.

From equation (1.1) for the case a(t) = 0,b(t) = 1, we obtain the negative

order modified Korteweg-de Vries (nmKdV) equation of the form ( [53]):

Uggat — (2uxlufa:t);p - 07

For simplicity, we study the equation (1.1), in the case a(t) = 1,b(t) # 0,
B < b(t) < By,B; >0,t > 0.

In this paper, we propose an algorithm for constructing periodic infinite-gap
solutions u(z,t), ug(z,t),x € R, ¢t > 0 of the mixed problem (1.1)—(1.3) by reduc-
ing it to an inverse spectral problem for a self-adjoint periodic Dirac operator of
the form:

d
S(T,t)yEB£+Q($+T,t)y:)\y, z,T€R, t>0, (1.4)

where

o= (5 b) oo (G 200 ) - (30)
P(x,t) =0, Q(x,t) = u,(z,1).

Inverse spectral problems play a significant role in integrating some important
evolution equations of mathematical physics and are one of the most important
achievements of the last century. An important breakthrough was made in the
paper by Gardner, Green, Kruskal and Miura [13] in 1967, where they discovered
a deep connection between the well-known nonlinear Korteweg-de Vries (KdV)
equation

qt = 699 — Yz, Q(wvt)’t:(] = qo(ﬂ?), zeR,t>0,
and the spectral theory of the Sturm—Liouville operator

Lty =—y" +qlz,t)y= XAy, z€R,t>0.

The authors of [13] succeeded in finding a global solution to the Cauchy problem
for the KdV equation by reducing it to the inverse scattering problem. The inverse
scattering problem for the Sturm—Liouville operator on the entire axis was studied
in the works of Faddeev [11], Levitan [41], Marchenko [44] and others. In [38], Lax
proved the universality of the inverse scattering method (ISM) and generalized
the KdV equation by introducing the concept of a higher KdV equation. In their
work [57], Zakharov and Shabat showed that the nonlinear Schrodinger equation
(NLS)
tuy £ 2|u]2u + Uy = 0,

can also be included in the ISM formalism. Using a technique suggested by Lax,
they found a solution to the NLS equation for given initial functions u(z,0) that
decay sufficiently rapidly as |z|] — oco. Soon Wadati [54], using the ideas of
Zakharov and Shabat, proposed a method for solving the Cauchy problem for
the modified KdV equation (mKdV):

U + 6ulug + Uggy = 0, wp £ 6\u|2ux + Upge = 0.
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Combining the focusing nonlinear Schrodinger equation (FNLS) and the com-
plex modified Korteweg-de Vries equation (cmKdV), Hirota [16] proposed a method
for finding exact solution to the equation titled “Hirota equation”:

i+« (qm + 2!q|2q) +1i8 (qu + 6|q|2qx) =0,a,8eR, zeR, t>0.

Ablowitz, Kaup, Newell, Sigur [1] and Zakharov, Takhtadzhyan, Faddeev [5§]
showed that the ISM can also be applied to the solution of the sine-Gordon (sG)
equation:

Uyt = sinu, u=u(z,t), z€R, t>0.

It should be noted that in the works [35], [51], [55], the modified Korteweg-de
Vries—sine Gordon (mKdV-sG) equation of the form

3 5 .
Ugt + Q §uwum 4 Ugpprr ¢ = bsinu,

where a,b = const, was integrated by a direct method in the class of rapidly
decreasing functions.

The application of the ISM to the NLS, mKdV, sG, FNLS-cmKdV and mKdV-
sG equations is based on the scattering problem for the Dirac operator on the

entire axis:
d
22@'( dz _q(f>>,x€]R.
r(x) —4

The inverse scattering problem for the Dirac operator £ on the entire axis was
studied in [12]. It is known that the operator £ is not self-adjoint, in the “rapidly
decreasing”case it has a finite number of multiple complex eigenvalues and can
have spectral singularities that lie in the continuous spectrum. The scattering
data of a non-self-adjoint Dirac operator, in addition to the characteristics of the
continuous spectrum, include a discrete spectrum and spectral singularities. In
papers [1], [16], [28]— [30], such nonlinear evolution equations were integrated in
the case when all eigenvalues of the corresponding Dirac operator £ are simple
and without spectral singularities. In this regard, the search for a solution to
nonlinear evolution equations without a source and with a self-consistent source
corresponding to multiple eigenvalues of the Dirac operator £ is relevant. These
problems are discussed in papers [28] and [33].

Using the method of the inverse spectral problem for the Sturm—Liouville oper-
ator with a periodic potential, when the spectrum contains only a finite number of
nontrivial gaps, in the works of Dubrovin—Novikov [9], Its [19], Its—Kotlyarov [20],
Its—Matveev [21], Matveev—Smirnov [46]- [47], Smirnov [52], the complete inte-
grability of the KdV, NLS, mKdV, sG, FNLS-cmKdV equations in the class of
finite-gap periodic and quasiperiodic functions was established. In addition, an
explicit formula in terms of Riemann theta functions was derived for finite-gap
solutions of such nonlinear evolution equations. In these papers, the solvability
of the Cauchy problem for nonlinear evolution equations for any finite-gap initial
data was proved. This theory is presented in more detail in monographs [14], [56],
as well as in papers [4], [45].

It is well known that finding an explicit formula for solving a nonlinear evo-
lution equation in the class of periodic functions depends significantly on the
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number of nontrivial gaps in the spectrum of the periodic Sturm—Liouville oper-
ator and the Dirac operator. In this regard, it is convenient to split the class of
periodic functions into two sets:

1) the class of periodic finite-gap functions;

2) the class of periodic infinite-gap functions.

The following n—gap periodic Lame-Ince potentials are introduced in [2] and
[18]:

gn(z) =n(n+1)p(x), n e N
where p(z) is the Weierstrass elliptic function.

It is known from [17] that if ¢(z) = 2acos2z,a # 0, then in the spectrum
of the Sturm-Liouville operator £y = —y” + ¢(x)y,z € R, all gaps are open, in
other words, ¢(z) is a periodic infinite-gap potential. Similar examples exist for
the periodic Dirac operator [8].

Using the ideas of [16], in papers [10], [26,27], a method for constructing exact
solutions of the Cauchy problem for equations composed of a combination of the
defocusing nonlinear Schrodinger equation and the complex modified Korteweg-
de Vries equation (DNLS-cmKdV) of the following forms is proposed

iug + b(t) (um — 2|u|2u) —ia(t) (umx — 6\u|2ux) =0,

iug + b(t) (uze — 2 (Ju* = p*) u) — ia(t) (ugee — 6 (Jul* — p*) uz) =0,
iug + b(t) (uze — 2[ul*u) — ia(t) (uzze — 6ul*ug) — ic(t)uy — d(t)u =0,
0<p<oo, u(z,t)=q(z,t) —ip(z,t), x € R,;t > 0.
in the class m — periodic infinite-gap functions. Based on the ideas of the above
works, in [31,32] the solvability of the Cauchy problem was established for non-
linear mKdV-coshG, Liouville(L) and mKdV-L equations in the class of real
infinite-gap 7w — periodic in z functions.

Note that the KdV and mKdV equations of negative order, as well as their
hierarchies, were studied in [22]. The integrability of the negative order mKdV—
Liouville equation in the class of periodic infinite-gap functions was proved in [24].
In addition, the Cauchy problem in the class of periodic, almost periodic infinite-
gap functions for nonlinear evolution equations without and with a self-consistent
source, as well as with an additional term in various settings was studied in [3],

[25], [29,30], [34], [39,40].

2. Fundamental concepts of a Dirac Operator

Let us denote by c(z, A\, 7,t) = (c1(x, A\, 7,t), cax, \, T, t))T and s(z, A\, 7,t) =
(s1(z, A\, 7, 1), s2(x, A, 7,t))T solutions of the equation (1.4) with initial condi-
tions ¢(0,\,7,t) = (1,0)7 and s(0,\,7,¢) = (0,1)7, respectively. The func-
tion A(A, 7,t) = c1(m, A\, 7,t)+ sa(m, A\, 7,t) is called the Lyapunov function for
equation (1.4). The spectrum of the Dirac operator £(7,t) in (1.4) is purely
continuous:

“+o0o
o(€) = {NeR:|AN)| < 2} = R\ ( U (Agnl,Azn)> .

n=—0oo

The intervals (Aop—1, A2p) ,n € Z\{0}, are called gaps, where )\, are the roots
of the equation A(A) F2 = 0. They coincide with the eigenvalues of the periodic
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or antiperiodic (y(0,7,t) = +y(m, 7,t)) problem for equation (1.4). It is easy to
prove that A_1 = Ay = 0, that is, A = 0 is a double eigenvalue of the periodic
problem for equation (1.4).

The roots of the equation s1(m, A\, 7,t) = 0 are denoted by &,(7,t),n € Z\{0},
while &,(7,t) € [A2n—1,Aon],n € Z\{0}. They coincide with the eigenvalues of
the Dirichlet problem for system (1.4) with boundary conditions y;(0,7,t) =
0, y1(m,7,t) = 0.

Definition 2.1. Numbers &, (7,t),n € Z\{0}, and signs

on(1,t) = sgn{sy (m,&,,7,t) —c1 (m,&p, 7, t)} = £1, n € Z\{0} are called the
spectral parameters of the operator £(7,t). The spectral parameters &,(7,t),
on(1,t) = £1,n € Z\{0}, and the spectral boundaries \,(7,t),n € Z\{0}, are
called the spectral data of the Dirac operator £(,t).

Definition 2.2. The problem of reconstructing the coefficient Q(z,t) of the op-
erator £(7,t) from the spectral data is called the inverse problem.

If we construct the Dirac operator £(7,0) using the initial function ug(x + 7),
z,7 € R, we will see that the boundaries of the spectrum A, (7),n € Z of the

resulting problem do not depend on the parameter 7 € R, that is, A\, (7) = \p,n €

Z, and the spectral parameters depend on the parameter 7: &) = £9(7),00 =

rYn
00(1) = £1,n € Z, and are periodic functions:

O +7m)=£6%7),0%(r + 1) =2(1), 7T €R.

Solving the direct spectral problem, we find the spectral data
{An, (1), 00(7) = £1,n € Z\{0}} of the operator £(r,0).

Definition 2.3. The coefficients P(z,t) = 0,Q(z,t) = ul,(z,t) of the periodic
Dirac operator £(7,t) are called infinite-gap functions if the boundaries of the
gap (Aop—1, Aap) ,n € Z, satisfy the conditions

<A< <A< A <H S o< <SG < <.
where )\71 :)\0:&):0.

Definition 2.4. The coefficients P(z,t) = 0,Q(z,t) = ul,(z,t) of the periodic
Dirac operator £(7,t) are called finite-gap functions if there exists a finite number
N such that for all |n| > N the equalities Aop—1 = Ao =&, n=N+1,N+2,...
hold.

Inverse problems for the Dirac operator of the form
0 1 y’1> (p(w) q(w)><y1> <y1>
Ly = + =\ ,reR
! < 10 > ( v a@) —p(x) ) \ v v

with periodic coefficients p(x + 7) = p(x),q(x + 7) = ¢g(z),x € R in various
formulations are studied in the works [5-8], [15], [36,37], [42], [48-50].

3. Main result

The main result of this paper is contained in the following theorem.
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Theorem 3.1. Let u(x,t), ps(z,t),x € Rt > 0 be solutions of the mixed problem
(1.1)(1.3). Then the boundaries of the spectrum A\,(7,t),n € Z\{0}, of the
operator £(7,t) do not depend on parameters T and t, that is, \p(T,t) = \p,n €
Z\{0}, and the spectral parameters &,(T,t),0n(7,t) = £1,n € Z\{0}, satisfy the
first and second systems of Dubrovin differential equations, respectively:

1.86%(:75) =2(—=1)""Lo, (1, ) (E(T, )0 (T, 1), n € Z\{0}, (3.1)
O (T, n
2 P00 o1y b D)nlE( 1), n € ZA[0). (32
In addition, the following initial conditions are satisfied:
fn(T’ t)’t:ﬂ = 52(7—)7 Un(Ta t)’t:o = 0701(7—)7 ne Z\{O}a (3-3)
where £9(7),00(7) = £1,n € Z\{0} are the spectral parameters of the Dirac

operator £(7,0).
The sequences hy(€) and gn(§),n € Z\{0}, in equation (3.2) are defined by the
formulas:

ha(€) = V(€ (T, 1) = Aan—1) Qan — En(T, 1)) - fulE),

)

_ T Aako1 = &a(m 1) Qar — &n(T, 1))
Re= 1 e ey
k#n
1 6211,
&) = T mmeamy [2§n(7, )
where £ = &(1,t) = (..., & 1(1, 1), &1(T, 1), ...), o =o(r,t) = (..., 0-1(7, 1), 01(7, 1), ...).

+ 26(0)En (T, 1) (ure + pire) | (3.4)

Proof. Let m periodic in x functions u(x,t), u.(x,t), x € R, t > 0 satisfy the equa-
tion (1.1). Denote by yn = (yn,1(x, T, 1), yn2(x, T, )T ,n € Z, the orthonormal
eigenvector functions of the operator £(7,t), considered on the interval [0; 7] with
Dirichlet boundary conditions y1(0,7,t) = 0,y (7w, 7,t) = 0 corresponding to the
eigenvalues &, = &,(7,t),n € Z\{0}. Differentiating with respect to the variable
t, the identity

gn(Tv t) = (2(7—7 t)ynv yn) y L E Z\{O}a
and using the symmetry of the operator £(7,t), we have

aﬁnétr, ) _ (89(%4; 7,1) yn,yn> neZ\0), .

Using the explicit form of the scalar product, we write the equality (3.5) in the
form

o0&, (7,1t @
é(;T) = 2/ [Yn1Yn,2Uzt] d. (3.6)
¢ 0
Substituting (1.1) into (3.6), we obtain
o0&, (T, t Q
g(étT) = 2/ Yn,1Yn,2 (cosh(2u) + b(t) (upzt — 2ugpiet),) do. (3.7)
0
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Using the following identities

(u(m,t) =u(0,1), p(m,t) =p(0,1),
ynl(Tr T,t) = yn,1(0, T, t) 0,
yn,1 = UgYn,1 — gnyn 2, yn 9 = —UzYn2 + gnyn 1,
Ynano) = En (V21 — ¥22) ,
(yT2L71 B y721,2)/ = 2ug (yr%,l + yr2L,2) - 4§nyn,1yn,27
(3/721,1 + yzg)/ = 2ug (%%,1 - y%z)

and taking into account

Maat = 2Uglqt,

it is easy to derive the equality

2/ Yn,1Yn,2 (cosh(2u) + b(t) (ugat — 2Ugpiet),) dx = / yn,lyn7262udl‘—|—
0 0

+/ yn,lyn,2€2ud$+2b(t)/ Yn,1Yn,2d (Ugat — 2Ugfizt) =
0 0

1 g 1 g _
= 25/ 2yn2 (y;’g + uxyn,Q) etdx + 25/ 2Yn1 (—y;hl + u;,;ynvl) e 2tdy—
n JO n
s 1 ™
_ 2b(t)§n/0 (umgt — 2umﬂxt> (y?%l — 21721,2) dr = 2§n/(; (yn 26 ) dr—
1 i 2 2u\/ i 2 2
- 2/ (yn,le_ u) dxr — 2b(t)§n/ Uzt (yn,l - yn,2) dz+
&n Jo 0
T ) ) eZu ) T=7 672u 5 =7
+ 2b(t)£n/ 2uy (yn,l - yu,2) /‘Lﬂ?tdl’ = 57 Yn2 - 7yn,1 -
0 25" =0 25" x=0
T s
=200 [ (=) dua + 20060 [ pad (54 920) =
1 =T _ T
25 2uy721 2 + 2b(t)§nuxtyg,2‘i:g + 2b(t)§n/0 2Ug Uyt (3/7%71 + y,2172) dx—
n =0

- 4b(t)§r2z / 2yn,1yn,2u;10td5C + 2b(t)fnﬂxty72;,,2 ’zzg -
0

T e2u T=7
- Qb(t)&l/ Haat (2/721 s o) dr = | —— + 2b(t)&n (et + fiat) Yn o -
0 ) ) 25’” ; 20
™
_4b(t)§7%/ 2yn,1yn,2uztdx-
a
Thus, we have
s 1 62u 5 =7
2 dr = ———— 2b(t 3.8
/0 Yn,1Yn,2Uzt AT 1+ 4b(t)€,21 |:2§n + ( )fn (uﬂ?t + :ua?t):| yn,? 0 ( )

Substituting (3.8) into the identity (3.7), we have
85”(7-7 t) _ (2£n)_1 e2u + 2b( )gn (u:vt + ,Umct) [

ot 1+ 4b(t)&2
In [28], the following equality is proved:

yT2L,2(7T7 T, t) - yT2L,2(O7 T, t) = 2(_1)n0'n(7—7 t)hn(g(Tv t))

Y o(m,7,t) =y 5(0,7,8)] . (3.9)
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Substituting this expression into the identity (3.9), we obtain (3.2). Similarly, we
can prove (3.1).

If we replace the Dirichlet boundary conditions with periodic (y(0,7,t) =
y(m,7,t)) or with antiperiodic (y(0,7,t) = —y(m, 7,t)) boundary conditions, then
instead of the equation (3.9), we obtain

O (T, 1)
ot
Now in the equation £(7,t)v, = (7, t)vp,n € Z, we get t = 0. Since the
eigenvalues A\, (1) = A, (7,0),n € Z, do not depend on the parameter 7 € R, we
have A\ (7,t) = A\ (T) = Apyn € Z.
The theorem is proved. O

=0, A\p(7,1t) = A (7,0).

Now taking into account the conditions (1.2) and integrating the equalities

+o0

UT(T7t) = Z (_1)k_10-k(7-7t)hk(g(Tat))a (3'10)

k=—o00

Wrr (7—7 t) = u72— (7—7 t)a

we have
T —+o00
u(r,t) = oz(t)+/ { > (l)k_lak(s,t)hk(g(s,t))}ds, (3.11)
0 k=—00
= Tu2 S S. .
pr(r) = 80 + [ 0(s.0)a (3.12)

Lemma 3.1. The following formulas hold:

w(T, 1) = U (1, 1) + pre(7,1) = exp{/ A(s, t)ds }

(3.13)
( /Bstexp{Qust /Ay, dy} }
where
8D o, (€, 1)E (T, 1)
Aln 1) = kz_: 1+ 4b(DE(T, 1) R
o (3.14)

io 2(=1)* Lok (r, ) (7. 1)

B(r,t) = 1+ 4b(t)E} (T, t)

k=—00

Proof. If differentiating with respect to t the second trace formula

+o0o 2 2
A + A
NTT(T7 t) + UTT(T7 t) = Z <%_122’€ - 52(7—7 t)) s

k=—o0
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and using the system of Dubrovin differential equations (3.2), then with respect
to the function w(7,t) we obtain the linear differential equations:

+oo 6 “+o00 4(—1 k—1 : h

k=—o00, k=—o00,
k#0 k#0
“+o0

o2u o 2(=1)FLog(r, t)ha(€)
x (2&@ + 2b(t)&k (ure + ;m)) = ) 1+ 4b(t)€2 i

k=—o0

00 —
) 3 SO (€]

1+ 4b(t)&} ’

k=—c0
that is,
wy(7,t) — A(T, t)w(r,t) = B(7,t)e*". (3.15)
Solving the linear equation (3.15), we obtain (3.13).

The lemma is proved O

Next, taking into account formulas (3.11) and (3.13), the system of differential
equations (3.2) can be written in closed form:

8&};,75) = 2(=1)"0n (T, )V (En(T, 1) — Aan—1) (Man — &n(T, 1)) Fu(€) gn (),

fn(Tv t)|t:0 = 52(7—)7 Un(Tv t)|t:0 = 02(7)7 ne Z\{O}’

(3.16)

where

T +oo
gn(§) = 26, (1 +14b(t)§2) - exp {Qa(t) + 2/0 ( Z (—1)k_10k(8,t)hk(f)> ds}

k=—0o0

2b(t)én iXJI: L{Lbf?t)f;lgsvt)ds} : <§(t) +/OT B(s,t) exp{2a(t)+
s oo 1
+2/0 (k;oo(—l)’“‘lak(y, t)hi(€) — 2A(y,t)> dy} dS) )

gEf(T,t) = (...,g_l(T,t),fl(T,t),...),
o=o(r,t)=(...,0-1(7,t),01(7,t),...).

As a result of the change of variables
fn(’i', t) = Aop_1 + ()\Qn — )\Qn_l) sin® an(’i', t), n e Z\{O}, (3.17)

the Cauchy problem (3.16) can be written as a single equation in the Banach
space K :

dx(7,t)
dt

= H(a(r,1)), 2(r,t)],_ = 2°(r) € K, (3.18)
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K={z=(..,z_1(1,t),z1(7,t),...) :

“+o00

||$(T,t)|| = Z (>\2n - )\Qn—l) <|nl|2 + 1> |CCn(T,t)| < 00

n#0

H(z) = (..., H-1(2), Hi(z),...), Hp(z) = (=1)"0p(7) ful2 (7, 1)) gn (7, 1)).

It is known that if ug(x +7) = ug(z) € C3(R), then uf(x) € C*(R). Therefore,
for the length of the gaps of the operator £(7,0) the following estimate holds
(see [48]):

e gy = J%l % (3.19)
Yk = A2k 2k—1 23|l<:\4 |k|5 .

Here

4
Aok =k + > ek + 274 k|7 g3 | + |k Pef,

j=1
4
Aop—1 =k + > ek =274k g3 | + |k Pey (3.20)
j=1
+oo +o00
> lab|” < o0, > (e5)? < o0, 6 = &f — e
k=—o00 k=—o00

From here, taking into account &, (7,t) € [A2p—1, A2n], we obtain

ki;f & (T, 1) — &k(T, )| > a1, az|n| < &u(7,t) < asln|, a; > 0,i=1,2,3.
n

Lemma 3.2. The following estimates hold:

C1 < fule(r, )] < Ca, ‘W‘ < Cypm, (3.21)
Cy Ogn(x(T,t)) Csvm (1
|gn(2(7,1))| < Tl ‘ . ‘ < (!ml2 - 1) : (3.22)

where C; > 0,7 = 1,5, do not depend on the parameters m and n.

Proof. Estimates (3.21) are proved in the paper [43], so we prove (3.22). Since
the functions «(t), 8(t),((t) are bounded, there exist numbers M; > 0,5 = 1,3,
such that the following inequalities hold:

la(t)] < My, |B(E)] < My, [C(2)] < M.
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Now, using the closed form system of differential equations (3.2), the change of
variables (3.17) and the estimates (3.19)—(3.21), we obtain

1. |A(T,t)| =
| S A 0o e sin 20 (7, () (i s t))z‘ .
N 1+ 4b(t) (Aag—1 + i sin® zy, (7, 1)) N

o) 2
< i Alb(t) vk [sin 2 (7, 1)| | fr ()| | A2k—1 + Yk sin® zx (7, 1)
- Alb(8)] | Agk_1 + Y sin® (7, )|

k=—o00,
k0
+oo
< Z Vi | fre(@)] = Au;
k=—oc0
+o0 k-1 0
(—1) L (T) vk sin 2ay (7, t) fr ()
2. |B(7,t)| = -
|B(T,1)] Z ‘ 1+ 4b(t) (Agp_1 + 7y sin? $k(7',t))2

s %ISln%k(T)T)Ilfk( Doy O

k=—o0,
k#0
“+oo

> (=D R (r)yk sin 22 (1, 1) fi ()| <

k=—0c0

“+oo

> wlfr(z)] <

k=—oc0

3.

+o00
<O Z e = As;

k=—o00

o« 0fi()
> (=) od(r) sin 2y (7, t) 0z,

k=—o0

4.

<

“+oo
< Z 7k‘afk(ﬂc)

O0xm

k=—o00

L DAL SO0 (D () a1+ S0 (7, 0)

[1 + 4b(t) (A2m—1 + Ym sin? z,, (7, t))2:| 2

X [4()(75) 08 22 (7, 1) (A2m—1 + Ym sin? 2, (7, t))3 +
+ €08 22, (7, 1) (A2m—1 + Yo SI0% T (7, 8)) + Y S0 22 (7, 8) | +
L% A(=1)F ()0 (r) sin 2a (7, ) D (Nggo_y + vy sin® g (7, 1))

up>

b oo 1+ 4b(t) ()\gk_1 + Vi Sln2 x (T, t))2 7
that is,
OA(T,t) 1
< Asy | —5 +1);
‘ O ’— 7 (|m|2+ )
OB(r,t) _ 2¢o8 2z, (7, 1)

6.

0Ty, 1+ 4b(t) ()\Qm_l + Y sin? @, (7, t))2 -
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8b(t) sin? 22, (T, t)ym (A2m—1 + Vi sin® 2, (1, 1))
o 2
[1 +4b(t) (Agm—1 + Y sin® 2 (7, t))z}
X (Do) esin 2, )

p>

koo 1+ 4b(t) (Aak—1 + e sin® ax (T, t))

that is,
0B(1,t) 1
< AsVm 1
‘ duy | =07 (\ !2+>
7. |gn(z(7,1))| <
_ e {20(t) + J§ (ChZ o (= 1) oR(s) e sin 22 (s, ) () ds}

2 (Aon—1 + ymsin® zp (1, 1)) ( +4b(t) (A2n—1 + Y sin® zp (1 ,t))z)

2b(t) (/\zn—1 + v, sin? xn (T, t)) . T . Ay
1 46(8) (Aan 1 + s ()2 {/0 Als,)d } C(t)+

+ /OT B(s,t) - exp {2a(t)+
s +o00
+/o ( > (1) oR(y) e sin 224 (y, ¢ )fk(ﬂﬁ)—A(yvt)> dy} ds

7

2

k=—0o0
Cu,
~nl’
g dnla(r1)
0T,

_ exp {2a(t) + [y [ 022 oo (=110 () sin 2wy (s, t) fio ()] ds}
2 (Aon—1 + Y sin zp(1,1)) ( +4b(t) (A2n—1 + Y sin® zy (1, 1)) )

X/OT 2(—=1)""160 (8)ym 08 22, (5, 1) frn () ds+

T +o00o
+/0 ( Z (—1)k_10‘2(8)’}/k81n2xk(87t)agl;:')) ds+

k=—o00

2b(t) (Aan— nsin? @, (7, T
()( 2n—1 + Yo SI07 2 (7 )) 2.exp{/ A(s,t)ds}x
1+ 4b(t) (A2n—1 + Yn sin® z, (1, 1)) 0

X </0 ‘st> C) + /OTB(s,t) exp {2a(t)+

O0xTm

s +oo
+/0 ( > (=1 o (y) e sin 2z (y, t )fk(w)—A(yvt)> dy} ds

k=—o00

20(t) (Aon—1 + nsin® a,(7,1)) E - exp {/OT A(s,t)ds} X

1+ 4b(t) ()\271—1 + Tn Sin2 Jjn(Tv t)

_l’_
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X [/OT 8(3;(;;75) -exp {2a(t)+

s +00
+/O ( > (=1 oRy) e sin 2zx(y, 1) () —A(y,t)> dy} ds+

k=—00

+ /OT B(s,t) - exp {2a(t)+
s +oo
+/0 ( D (1o (y) e sin 2ak (y, t) fr(@) — A(?JJ)) dy} X

k=—o00

“( /0 (21700, () €08 20 (31, 0) fn(2) +

+ Z DE169 (y) e sin 22, (y, ¢ )agl;(x) - 8;1563/,75)) dy> ds] .

k=—o00

agn (.’IJ(T, t)) Ym 1 C57m 1
—— | < Ay 4+ As— | —=+1 | < ——4+1].
‘ O2m \\3 Sl \mE 7)) = Tl \mE ©

Here A; = const,i = 1,8.
The lemma is proved. O

Thus,

Lemma 3.3. If a periodic infinite-gap function ug(x) satisfies the condition
up(z + ) = up(z) € C*]R) and a(t),B(t),((t) € C([0;00)) are continuously
differentiable bounded functions, then the vector function H(x(7,t)) satisfies the
Lipschitz condition in the Banach space K, that is, there exists a constant L1 > 0
such that for arbitrary elements x(7,t),y(7,t) € Ky, the following inequality holds

[H (z(7,t)) = H(y(7,t)|| < Lal2(7, 1) — y(7,1)]],
where

—C Z Jn <||2 +1> < . (3.23)

n=—0o0,

n#0

Proof. First, using Lemma (3.2), we estimate the derivative of the function

Fo(x) = fu(z)gn(z),n € Z\{0} :

OF, O fn Ign C
P20 < |2 b )+ o] | 2 iy

Csym (1 Cy (1 Csm (1
+ Gyt < 2+>§nym4< 2+1> + Gyt < 2+1>§
[nl - \Iml [nl \|m| nl \Iml

< 03 TYm

Ym 1
<o (),
[n| \ |m/|?

where the positive constant C' = C3C; + C2C5 do not depend on m and n.
Further, using the expression

Hy(x(7,t)) = (=1)" 0y (1) Fu(x(7, 1)), n € Z\{0},
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we obtain

[ Hp(2(7,1)) = Ho(y(7,1))| = [Fn(2(7, 1)) = Fa(y(7,1))] -
Now let us apply Mean Value Theorem on the segment ¢ € [0, 1] to the function
o(t) = F(y + t(x — y)) and obtain p(1) — p(0) = ¢’ (¢*), that is,

+o00
R@) =) = > 2 () = gl ),
e

where 0 = y + t*(x — y). It follows that
| Hn (2(7, 1)) = Hn(y(7, 0))| = |Fu(2(7, 1)) = Fu(y(7,1))] <

- +§°3° ‘6Fn(9)

\ (7, 8) — g (7 1)] <

me 0Ty,
m#0
c & 1 c
< = 41 t) — ) = —|lz —y|.
<< mzz_mﬁvm(|m|2+ ) kol = ) = o =
m##0
Next we estimate the norm:
—+00 1
IH@) - Ho)l = Y (W i 1) \Ho(2) — Hay)] <
n=-—o00,
n#0
+o00
1 C
<Y (2+1)||x—yu=L1ux—yH.
2\ T
n#0

Here
+oo ~ 1
L=C = < + 1) .
2 In] \ |n|?

Since ug(x) € C?(R) and uf(z) € C1(R) the estimates (3.19) have the following
form: .
Tn = A2n — A2p-1 = [920] %
In|  In]
Thus, L < oo, that is, the Lipschitz condition is satisfied. Therefore, the
solution of the Cauchy problem (3.2), (3.3) for all ¢ > 0 and 7 € R exists and is
unique.

The lemma is proved. O

In the same way as above, the following theorem is proved on the existence
of a solution of the Cauchy problem for the first system of Dubrovin differential
equations, that is, the Cauchy problem (3.1), (3.3).

Lemma 3.4. If a periodic infinite-gap function ug(x) satisfies the condition
ug(r + m) = uo(z) € C3(R) and a(t), B(t),((t) € C([0;00)) are continuously
differentiable bounded functions, then the solution of the Cauchy problem (3.1),
(3.3) for allt >0 and 7 € R exists and is unique.
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Remark 3.1. Theorem (3.1), Lemma (3.3) and Lemma (3.4) give an algorithm
for finding a solution of the mixed problem (1.1)—(1.3):

1. First, we find the spectral data A,,£2(7),0%(7) = £1, n € Z\{0}, of the
Dirac operator £(7,0). Let us denote the spectral data of the operator £(7,t) by
Ans&n(T,1),0n(7,t) = £1,n € Z\{0};

2. Now, having solved the Cauchy problem (3.16) for an arbitrary value of T,
we find &,(7,t),on(7,t),n € Z\{0};

3. From the formula (3.10)—(3.12) we define the functions u(7,t), u(7,t), 7 €
R, t > 0, that is, solutions of the mixed problem (1.1)—(1.3).

So far we have assumed that the Cauchy problem (1.1)—(1.3) has a solution.
It is easy to directly verifying that the functions u(7,t), u-(7,t),7 € R, t > 0
obtained in this way, satisfy equation (1.1).

Lemma 3.5. The functions u(7,t), ur(7,t), 7 € R,t > 0, constructed using the
system of Dubrovin differential equations (3.2), (3.3) and formula (3.10)-(3.12)
satisfy equation (1.1).

Proof. In this case, we will also use the Dubrovin equation system (3.1), as well
as formula (3.4). Then from (3.2), we obtain

26, (7.1) (1 + 4120, 1)) P8 o 1)o7, ()™ +

+8(=1)"0(t)on (7, 1) () &5 (7, 1) (ure + pire)
0&p (T, 1) 0&y (T, 1)

2n(1,1) =5 — + 8b(t)E3(, =" =
— (1) (7, (£, 1) — Ab()n(r, 1) 2D

o7 (Urt + pre) -

Thus,

(T 1) | oy Pl ) _

ot ot
2(r
= 2(=1)"0, (7, t)hn(E(T,1))e% — 2b(t)8€%(7_’t) (ure(T,t) + pre(7, 1)) .

Summing both parts of this equality, we have

$ D |y 5 O

o o
k#£0 k#0
“+oo
= _262u Z (_1)k_10-k(7_7t)hk(£(7_7 t))_
o

= 20(8) (ure(7, 1) + (7)) Y =
k=—o00,

k0
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Now we use the trace formula (3.10). Then we obtain the following equality:

<X 9E2(T,t) X 9T, t)
> 4—7%f—~+2ba) > =

k=—o00, k=—o00,

k+#0 k#0
+oo
2y () — () (ara(r 1) i 1)) Y DT,

k=—00,

k+£0

(3.24)

or

Then, differentiating trace formulas:

—+o00 2 2
A1+ A
ul U, = g <2k 12 2k _ 5,%) ,

k=—o00

X (A A
—Urrrr — 2UTUTTT + 4“7’7“3 + 2”;1— =2 Z % - 5]3 ’

k=—o00

with respect to 7 and ¢, respectively, we have

+oo 2
0 t
- (QUTUTT + uTTT) = Z é-ka(,:)v (325)

k=—o00

— (2U7—U7-t + u7-7-t) = Z T, (326)

Using (3.25)—(3.27), we can write formula (3.24) as follows:
Urrt + 2UrUry =
= b(t) (Urrrrt + 2Urtlrrr + 2UrUrrrt — AU Urre — SUrUrrUrg — SUBUL) —
= b(t) (AUrtirrtiz + 2Uritirrr + Arttrtier + 2firgtierr) + 267 U
If we take the substitution
2(7,t) = un(7, 1), (3.28)

then, with respect to z(7,t) we obtain a linear equation

2+ 2ur2 = b(t) (Urrrrt + 2Urtrrry — 402Uy — 1200 Ur g — SUS U —
— AU Uy — 2fhrttirrr) + 220, (3.29)
It is easy to verify that the function
2(7,t) = b(t) (Urrrt — (2urpire),) + c(t) (62“ + 6_2“’)
is a solution of the linear equation (3.29). Choosing c(t) = %, we have
z(7,t) = b(t) (Urrrt — (2urpire).) + cosh(2u).
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From here and from the notation (3.28), when a(t) = 1, we obtain the equation
(1.1):
Urt = b(t) (Urrrt — (2urpire),) + cosh(2u).
The lemma is proved.

Remark 3.2. Tt is directly verified that if the estimates (3.19), (3.20) are satisfied,
that is, ug(z) € C°(R), then the series on the right-hand side of equality (3.27)
will be uniformly convergent. In addition, the uniform convergence of the series
in (3.10), (3.14) and (3.23) follows from equalities (3.19), (3.20) and estimate
(3.21).

Thus, we have proved the following theorem.

Theorem 3.2. If a periodic infinite-gap function ug(x) satisfies the condition
ug(z + 7) = ug(z) € C°(R),

and a(t), B(t),¢(t) € CLt > 0)NC(t > 0) are bounded functions, then there
exists a uniquely determined global solution u(x,t), u.(x,t), x € R;t > 0, of the
mized problem (1.1)—(1.3), which is determined by the formulas (3.11) and (3.12),
respectively, and belongs to the smoothness class (1.3).

O

4. Conclusion.

The inverse spectral problem method is applied to integrate the nonlinear
negative modified Korteweg-de Vries—cosine Gordon equation (nmKdV-coshG)
in the class of periodic infinite-gap functions. The solvability of the Cauchy
problem for the first and second infinite system of Dubrovin differential equations
is proved in the class of three and two times continuously differentiable periodic
infinite-gap functions, respectively. The solvability of the Cauchy problem for
the nmKdV-coshG equation in the class of five times continuously differentiable
periodic infinite-gap functions is established.
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