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CERTAIN CLASSES OF SEQUENCES OF CONVOLUTION

OPERATORS
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Abstract. This paper establishes conditions on the Young function Φ
and the summability exponent p(·) that ensure the validity of analogues
of Korovkin’s theorem for sequences of positive convolution operators in
Orlicz spaces LΦ and Lebesgue spaces Lp(·) with a variable summabil-
ity exponent. The results obtained in the space LΦ are applied to the
convergence of a sequence of Fejer and Poisson operators. Also, using
the obtained result, the convergence of the family of Fejer and Steklov
operators to the unit operator in the space Lp(·) is established.

1. Introduction

It is well known that one of the important tools in approximation theory is
Korovkin’s theorem ([19]) on the convergence of a sequence of linear positive
operators. This theorem states that if a sequence of linear positive operators
Ln : C([0, 1]) → C([0, 1]), n ∈ N , satisfies the condition

lim
n→∞

∥Ln(gi)− gi∥∞ = 0, gi(t) = ti, i = 0, 1, 2,

then for any f ∈ C([0, 1]) it holds

lim
n→∞

∥Ln(f)− f∥∞ = 0.

Note that a linear operator L : F (X) → F (Y ) is called positive if for ∀f ∈
F (X) satisfying f ≥ 0, we have L(f) ≥ 0, where X and Y are metric spaces,
F (X) is a linear space of functions f : X → R. In [2], applications of Korovkin’s
theorem are given for a sequence of linear positive operators generated by the
polynomials of Bernstein, Kantorovich, and others. These results contribute to
obtaining analogues of theorems of Korovkin type and their statistical variants
in Lp spaces. Note that the concept of statistical convergence was introduced
by J.A. Fridy in [11]. Statistical convergence in arbitrary metric and uniformly
topological spaces was studied by B.T. Bilalov, T. Nazarova in [4]. Korovkin-type
theorems in Lebesgue spaces have been studied in [9, 12, 23]. The convergence
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of a sequence of operators generated by Kantorovich polynomials in Morrey-type
spaces was studied in [8]. Korovkin-type theorems and their statistical variants
in grand Lebesgue spaces were considered in [29]. Convergence of sequences of
operators to an identity operator in Lebesgue spaces with a variable summability
exponent was studied in [14, 26]. It should be noted that in [26] the uniform
boundedness of the family of convolution operators is proved and its applications
to the convergence of the sequence of Fejer and Poisson operators to the identity
operator are given. In [14], it is proved that a sequence of convolution operators
with an approximative kernel converges to an identity operator in the Lebesgue
space with a variable summability exponent. Analogues of Korovkin’s theorems
in general function spaces were studied in [3, 13, 30].

This paper is devoted to the study of the convergence of a sequence of posi-
tive convolution operators to an identity operator in Orlicz spaces and in spaces
with a variable summability exponent. It is established that in the reflexive Or-
licz space, the family of convolution operators with a positive kernel is uniformly
bounded. The obtained result is used to prove an analogue of Korovkin’s theorem
in Orlicz spaces. This question is also studied in the Lebesgue space with a vari-
able summability exponent. The results obtained are applied to the convergence
of convolution operators with Fejer and Poisson kernels in Orlicz spaces, Fejer
and Steklov operators in Lebesgue spaces with variable summability exponent.

2. Preliminary concepts and facts

Let us give some standard notations: R is the set of real numbers; N is the
set of natural numbers; X∗ is the conjugate space to the Banach space X; B(X)
is the Banach space of linear bounded operators acting from X to X. Let Φ(t) :
[0,+∞) → R be the Young function, i.e. is a convex, continuous function such
that Φ(0) = 0,Φ(t) > 0, t > 0, and the following conditions are satisfied

lim
t→+0

Φ(t)

t
= 0, lim

t→+∞

Φ(t)

t
= +∞.

By specifying the Young function Φ(t), the function is determined

Ψ(t) = sup
s≥0

{ts− Φ(s)} , t ≥ 0.

Function Ψ(t) is also a Young function and is called a complementary function
to function Φ(t). Complementary to Ψ(t) is the function Φ(t).

Definition 2.1. The Young function Φ(t) is said to satisfy the ∆2-condition, and
write Φ ∈ ∆2, if there exist k > 0 and t0 ≥ 0 such that

Φ(2t) ≤ kΦ(t), t ≥ t0.

Denote by LΦ(−π, π) the Orlicz space of measurable on [−π, π] functions f :
[−π, π] → C for which there exists a number λ > 0 such that

π∫
−π

Φ

(
|f(x)|
λ

)
dx < +∞.
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LΦ(−π, π) is a Banach space with Luxembourg norm

∥f∥Φ = inf

λ > 0 :

π∫
−π

Φ

(
|f(x)|
λ

)
dx ≤ 1

 .

In particular, for Φ(t) = tp the space LΦ(−π, π) coincides with the ordi-
nary Lebesgue space Lp(−π, π). If Φ ∈ ∆2, then the dual space of the space
LΦ(−π, π) is isometric to the space LΨ(−π, π). Moreover, if Ψ ∈ ∆2, then the
space LΦ(−π, π) is reflexive. The space LΦ(−π, π) is complete. In the space
LΦ(−π, π), the equivalent norm is the following Orlicz norm

∥f∥∗Φ = sup
g∈SΨ

π∫
−π

|f(x)g(x)| dx,

where SΨ =
{
g ∈ LΨ(−π, π) : ∥g∥Ψ ≤ 1

}
. The following Hölder inequality holds:

if f ∈ LΦ(−π, π) and g ∈ LΨ(−π, π), then fg ∈ L1(−π, π) and there exists c > 0
such that

π∫
−π

|f(x)g(x)| dx ≤ c ∥f∥Φ ∥g∥Ψ .

We will need the following fact ([25, Theorem 3, p. 1375]).

Theorem 2.1. Suppose that T is a bounded linear operator on Lp(−π, π) into
Lp(−π, π), for 1 < p < +∞. If LΦ(−π, π) is reflexive then T is defined and
bounded on LΦ(−π, π) into LΦ(−π, π).

Let Φ−1(t) be the inverse of the function Φ(t). Let

h(t) = lim sup
x→+∞

Φ−1(t)

Φ−(tx)
.

The numbers

αΦ = − lim
t→+∞

lnh(t)

ln t
, βΦ = − lim

t→+0

lnh(t)

ln t

are the Boyd indices (see [7]) of the Orlicz space LΦ(−π, π). The following prop-
erties are valid

0 ≤ αΦ ≤ βΦ ≤ 1;

αΦ + βΨ = 1.

Condition 0 < αΦ ≤ βΦ < 1 is equivalent to the reflexivity of the space LΦ(−π, π).
Moreover, if

1 ≤ q <
1

βΦ
≤ 1

αΦ
< p ≤ +∞,

then the following continuous embedding holds:

Lp(−π, π) ⊂ LΦ(−π, π) ⊂ Lq(−π, π).

More general information about Orlicz spaces can be obtained from [21, 22, 24].
Now we present the necessary information from the theory of Lebesgue spaces

with a variable summability exponent.
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Let a function p(·) : [−π, π] → [1,+∞) be given and p+ = ess sup
x∈[−π,π]

p(x). Denote

by Lp(·)(−π, π) the Lebesgue space with a variable exponent p(·) of measurable
on [−π, π] functions f : [−π, π] → C for which there exists a number λ > 0 such
that

π∫
−π

(
|f(x)|
λ

)p(x)

dx < +∞.

Lp(·)(−π, π) is a Banach space ([10, 17, 18, 20, 27]) with norm

∥f∥p(·) = inf

λ > 0 :

π∫
−π

(
|f(x)|
λ

)p(x)

dx ≤ 1

 .

For p(x) = p, the space Lp(·)(−π, π) coincides with Lp(−π, π).

Definition 2.2. A function p(x) is called locally log-Holder continuous and is
written p ∈ Plog(−π, π), if ∃c > 0 such that

|p(x1)− p(x2)| ≤ − c

ln |x1 − x2|
,∀x1, x2 ∈ [−π, π], |x1 − x2| ≤

1

2
.

Let L
p(·)
2π (−π, π) denote the space of functions f ∈ Lp(·)(−π, π) that are 2π-

periodically extended to the entire line R. It is known [20] that if p+ < +∞,

then the set C∞
0 (−π, π) is dense in Lp(·)(−π, π). Concerning approximation in

the space Lp(·)(−π, π), the works [1, 5, 6, 15, 16, 27, 28] and others are known.
In [16] it is also established that if p ∈ Plog(−π, π) and p+ < +∞, then there

exists a number cp(·) > 0 such that for ∀f ∈ Lp(·)(−π, π) and ∀g ∈ L1(−π, π) the
relation

∥f ∗ g∥p(·) ≤ cp(·) ∥f∥p(·) ∥g∥1 (2.1)

holds.

3. Main Results

Let C[−π, π] be the set of continuous functions f : [−π, π] → R on [−π, π]
with norm

∥f∥∞ = sup
x∈[−π,π]

|f(x)| .

Lp(−π, π) , 1 ≤ p < +∞, is the space of measurable functions f : [−π, π] → C
on [−π, π] with norm

∥f∥p =

 π∫
−π

|f(x)|p dx

 1
p

.

We denote by C2π(R) and Lp
2π(R), the space of functions from C[−π, π] and

Lp(−π, π), respectively, which are 2π-periodically extended to the entire line R.
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Let {φn}n∈N ⊂ L1
2π(R) be a positive periodic kernel, i.e. φn ≥ 0 almost

everywhere on R and such that

lim
n→∞

1

2π

π∫
−π

φn(t)dt = 1.

A positive periodic kernel {φn}n∈N is called approximatively identical if

lim
n→∞

1

2π

∫
δ≤|t|≤π

φn(t)dt = 0

holds for ∀δ ∈ (0, π). Consider the sequence of convolution operators

Ln(f)(x) = (f ∗ φn)(x) =
1

2π

π∫
−π

f(x− t)φn(t)dt, n ∈ N (3.1)

for f ∈ Lp
2π(R). In the work [2] equivalent conditions of convergence in Lp

2π(R)
the sequence of operators (3.1) to the identity operator are established. Namely
([2, Theorem 4.4, p. 108]), the following is proved

Theorem 3.1. The following conditions are equivalent:
a) for every f ∈ Lp

2π(R)

lim
n→∞

∥Lnf − f∥p = 0

and for every f ∈ C2π(R)

lim
n→∞

∥Lnf − f∥∞ = 0;

b) lim
n→∞

βn = lim
n→∞

1
2π

π∫
−π

φn(t) sin
2 t
2dt = 0;

c) {φn}n∈N is approximately identical.

In the proposed work this result is proved in Orlicz spaces and in Lebesgue
spaces with variable summability exponent. Let Φ(t) : [0,+∞) → R be a Young
function, LΦ

2π(R) be the space of functions f ∈ LΦ(−π, π) that are 2π-periodically
extended to the entire line R.

Theorem 3.2. Let 0 < αΦ ≤ βΦ < 1. The following conditions are equivalent:
a) for every f ∈ LΦ

2π(R)

lim
n→∞

∥Lnf − f∥Φ = 0

and for every f ∈ C2π(R)

lim
n→∞

∥Lnf − f∥∞ = 0;

b) lim
n→∞

βn = 0;

c) {φn}n∈N is approximately identical.

Proof. Let condition a) be satisfied. It is known that

∥Lnf∥p ≤ ∥φn∥1 · ∥f∥p , n ∈ N.
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Consequently, ∥Ln∥B(Lp) ≤ c, n ∈ N , where c = sup
n

π∫
−π

φn(t)dt. By virtue of

the continuous embedding of C2π(R) in Lp
2π(R) there exists a number c0 > 0

such that ∥f∥p ≤ c0 ∥f∥∞, ∀f ∈ C2π(R). Then for ∀f ∈ C2π(R) we have

lim
n→∞

∥Lnf − f∥p = 0. Taking into account ∥Ln∥B(Lp) ≤ c, n ∈ N , using the prin-

ciple of uniform boundedness, for ∀f ∈ Lp
2π(R) we obtain that lim

n→∞
∥Lnf − f∥p =

0. By virtue of Theorem 3.1, conditions b) and c) are valid.
Now let condition b) be satisfied. By Theorem 3.1, for ∀f ∈ Lp

2π(R) the
conditions are true

lim
n→∞

∥Lnf − f∥p = 0

and for ∀f ∈ C2π(R)

lim
n→∞

∥Lnf − f∥∞ = 0.

By virtue of Theorem 3.1, we obtain that the operator Ln acts boundedly in LΦ,
and there exists a number k > 0 such that ∥Lnf∥Φ ≤ k ∥f∥Φ, i.e.

∥Ln∥B(LΦ) ≤ k, n ∈ N. (3.2)

Then a) holds. Indeed, take an arbitrary function f ∈ LΦ
2π(R). Since C2π(R) is

dense in LΦ
2π(R), there exists a sequence of functions gm ∈ C2π(R),m ∈ N , such

that

lim
m→∞

∥gm − f∥Φ = 0. (3.3)

By the triangle inequality, we obtain

∥Lnf − f∥Φ ≤ ∥Ln(gm − f)∥Φ + ∥Lngm − gm∥Φ + ∥gm − f∥Φ . (3.4)

Taking into account (3.2) in (3.4), we obtain

∥Lnf − f∥Φ ≤ ∥Lngm − gm∥Φ + (k + 1) ∥gm − f∥Φ . (3.5)

Therefore, passing to the limit in (3.5) at n → ∞, we obtain

lim
n→∞

∥Lnf − f∥Φ ≤ (k + 1) ∥gm − f∥Φ .

On the other hand, taking into account (3.3), it follows from the last relation
that

lim
n→∞

∥Lnf − f∥Φ = 0.

The equivalence of b) and c) follows from Theorem 3.1. The theorem is proved.
Let us apply Theorem 3.2 to the convergence of the Fejer and Poisson operators

to the identity operator.
Consider the Fejer operator

Fn(f)(x) =
1

2π

π∫
−π

f(t)φn(x− t)dt, n ∈ N, f ∈ LΦ
2π(R),

where

φn(t) =

{
sin2((n+1)t/2)

(n+1) sin2(t/2)
, t ̸= 2πk

n+ 1, t = 2πk.

If 0 < αΦ ≤ βΦ < 1, then Fn(f) → f in the space LΦ
2π(R) for n → ∞.
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In fact, for n → ∞ we have

βn =
1

2π

π∫
−π

φn(t) sin
2 t

2
dt =

1

π(n+ 1)

π∫
0

sin2
(n+ 1)t

2
dt =

1

2(n+ 1)
→ 0.

It remains to apply Theorem 3.2.
Consider the Poisson operator

Pr(f)(x) =
1

2π

π∫
−π

f(t)Pr(x− t)dt, 0 ≤ r < 1, f ∈ LΦ
2π(R),

where Pr(t) = 1−r2

1−2r cos t+t2
. If 0 < αΦ ≤ βΦ < 1, then Pr(f) → f in the space

LΦ
2π(R) for r → 1.
Indeed, let rn < 1 be any sequence: rn → 1. We have

βr =
1

2π

π∫
−π

Pr(t) sin
2 t

2
dt =

1− r

2
.

Thus, βn = 1−rn
2 → 0. Therefore, by Theorem 3.2, we have Pr(f) → f in the

space LΦ
2π(R) for r → 1.

Let us proceed to study the analogue of Korovkin’s theorem for a sequence

of operators (3.1) in spaces L
p(·)
2π (−π, π). Recall that the following theorem ([14,

16]) is known regarding the convergence of a sequence of operators (3.1) in spaces

L
p(·)
2π (−π, π).

Theorem 3.3. Let p ∈ Plog(−π, π) and p+ < +∞ . If {φn}n∈N is an approxi-

mately identical kernel, then ∀f ∈ L
p(·)
2π (R)

lim
n→∞

∥Lnf − f∥p(·) = 0.

We obtain this result from the following analogue of Korovkin’s theorem in the

space L
p(·)
2π (−π, π).

Theorem 3.4. Let p ∈ Plog(−π, π) and p+ < +∞. The following conditions are
equivalent:

a) for every ∀f ∈ L
p(·)
2π (R)

lim
n→∞

∥Lnf − f∥p(·) = 0

and for every f ∈ C2π(R)

lim
n→∞

∥Lnf − f∥∞ = 0;

b) lim
n→∞

βn = 0;

c) {φn}n∈N is approximately identical.

Proof. According to Theorem 3.1, conditions b) and c) are equivalent. Let
us prove the equivalence of conditions a) and b). Let condition b) be satisfied.
Then, by Theorem 3.1, ∀g ∈ C2π(R) we have

lim
n→∞

∥Lng − g∥∞ = 0. (3.6)
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Take an arbitrary ∀f ∈ L
p(·)
2π (R). It follows from the conditions of the theorem

that the set C2π(R) is dense in L
p(·)
2π (R). Then for ∀ε > 0 there exists g ∈ C2π(R)

such that ∥f − g∥p(·) < ε. Applying (2.1), for ∀g ∈ C2π(R) we obtain that

∥Lnf − Lng∥p(·) < cp(·)ε.

Therefore, by the triangle inequality, we have

∥Lnf − f∥p(·) ≤ ∥Lnf − Lng∥p(·)+

+ ∥Lng − g∥p(·) + ∥f − g∥p(·) ≤
≤ (1 + cp(·)) ∥f − g∥p(·) + c1 ∥Lng − g∥∞ .

Hence, taking into account (3.6), we obtain that

lim
n→∞

∥Lnf − f∥p(·) ≤ (1 + cp(·))ε.

Then, due to the arbitrariness of ε, we obtain that

lim
n→∞

∥Lnf − f∥p(·) = 0.

The proof that a) implies b) is similar to the proof of this part in Theorem 3.2.
The theorem is proved.

From Theorem 3.4 it immediately follows that the families of Fejer and Steklov
operators converge to the identity operator (see [26, §3]).

Let p ∈ Plog(−π, π) and p+ < +∞, assume that

Fλ(f)(x) =
1

π

π∫
−π

f(t)kλ(x− t)dt, λ ≥ 1, f ∈ L
p(·)
2π (R),

is a Fejer operator, i.e. the kernel is given by the formula

kλ(t) =
2

n+ 1

(
sin((n+ 1)t/2)

2 sin(t/2)

)2

, n ≤ λ < n+ 1.

Then Fλ(f) → f in the space L
p(·)
2π (R) for λ → ∞.

Let us calculate the number βλ for the Fejer kernel kλ(t). We have

βλ =
1

2π

π∫
−π

kλ(t) sin
2 t

2
dt =

1

2π(n+ 1)

π∫
0

sin2
(n+ 1)t

2
dt =

1

4(n+ 1)
→ 0,

as λ → ∞. By Theorem 3.4 we obtain that Fλ(f) → f in L
p(·)
2π (R) when λ → ∞.

Let λ ≥ 1, ∆λ = [− 1
2λ ,

1
2λ ]. Assume that

kλ(t) =

{
2πλ, t ∈ ∆λ

0, t ∈ [−π, π]\∆λ

Extend kλ(t) 2π-periodically to the entire line R. Consider the Steklov operator

Sλ(f)(x) =
1

2π

π∫
−π

f(t)kλ(x− t)dt, λ ≥ 1, f ∈ L
p(·)
2π (R).

Then Sλ(f) → f in L
p(·)
2π (R) for λ → ∞.
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For any sequence λn ≥ 1 , lim
n→∞

λn = +∞, the kernel kn(t) = kλn(t) is approx-

imately identical. In fact, for ∀δ ∈ (0, π) there exists n0 such that for ∀n > n0

we have δ > 1
2λn

. Therefore, for ∀n > n0 we have∫
δ≤|t|≤π

kn(t)dt = 0.

Using Theorem 3.4, we obtain Sλ(f) → f in the space L
p(·)
2π (R) for λ → ∞.
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